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Preface

The need to predict, understand, and optimize complex physical and che-
mical processes occurring in and around the earth, such as groundwater con-
tamination, oil reservoir production, discovering new oil reserves, and ocean
hydrodynamics, has been increasingly recognized. Despite their seemingly
disparate natures, these geoscience problems have many common mathema-
tical and computational characteristics. The techniques used to describe and
study them are applicable across a broad range of areas.

The study of the above problems through physical experiments, mathe-
matical theory, and computational techniques requires interdisciplinary colla-
boration between engineers, mathematicians, computational scientists, and
other researchers working in industry, government laboratories, and univer-
sities. By bringing together such researchers, meaningful progress can be
made in predicting, understanding, and optimizing physical and chemical
processes.

The International Workshop on Fluid Flow and Transport in Porous Me-
dia was successfully held in Beijing, China, August 2–6, 1999. The aim of
this workshop was to bring together applied mathematicians, computational
scientists, and engineers working actively in the mathematical and numeri-
cal treatment of fluid flow and transport in porous media. A broad range
of researchers presented papers and discussed both problems and current,
state-of-the-art techniques.

Over seventy people from Australia, Bulgaria, China, France, Ghana, Ger-
many, Norway, Russia, South Korea, Spain, Taiwan, and the United States of
America attended this workshop and more than fifty papers were presented
on a variety of subjects in mathematical theory, numerical methods, parallel
computation, optimization, surface water and ocean modeling, chemically re-
active phenomena, atmospheric modeling, multiscale phenomena, and media
characterization.

This book contains thirty-eight selected papers presented at the workshop.
They cover recent advances and developments of a wide range of numerical
issues of multiphase fluid flow and transport in porous media. The porous me-
dia considered range from ordinary media to fractured and deformable ones.
The physical and mathematical models treated involve a variety of flows from
single phase compressible flow to multiphase, multicomponent flow with mass
interchange between phases. The numerical methods studied range from stan-
dard finite difference and finite element methods to nonstandard mixed finite
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element and characteristics-based techniques. The computational algorithms
developed utilize classical fast iterative solvers and modern multigrid and
domain decomposition approaches combined with local grid refinement tech-
niques. The characteristics-based techniques for advection-dominated flow
and transport processes are emphasized in this book; the classical modified
methods of characteristics to newly developed locally conservative Eulerian–
Lagrangian methods are addressed.

Financial support for the workshop was generously provided by the Na-
tional Natural Science Foundation of China, the Beijing Institute of Applied
Physics and Computational Mathematics, the Chinese State Key Basic Re-
search Project, the US Army Research Office-Far East, the Office of Naval
Research International Field Office Asia, and the US Air Force Asian Office
of Aerospace Research and Development. We also thank the local organizers
at the International Center of Computational Physics, Beijing, China, for
their hard work and hospitality.

Zhangxin Chen, Richard E. Ewing, and Zhong-Ci Shi

May 29, 2000
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Mathematical and Numerical Techniques
in Energy and Environmental Modeling

Zhangxin Chen Richard E. Ewing

Abstract

Mathematical models have been widely used to predict, understand,
and optimize many complex physical processes, from semiconductor or
pharmaceutical design to large-scale applications such as global weat-
her models to astrophysics. In particular, simulation of environmental
effects of air pollution is extensive. Here we address the need for using
similar models to understand the fate and transport of groundwater
contaminants and to design in situ remediation strategies.

Three basic problem areas need to be addressed in the modeling and
simulation of the flow of groundwater contamination. First, one obtains
an effective model to describe the complex fluid/fluid and fluid/rock
interactions that control the transport of contaminants in groundwater.
This includes the problem of obtaining accurate reservoir descriptions
at various length scales and modeling the effects of this heterogeneity
in the reservoir simulators. Next, one develops accurate discretiza-
tion techniques that retain the important physical properties of the
continuous models. Finally, one develops efficient numerical solution
algorithms that utilize the potential of the emerging computing archi-
tectures. We will discuss recent advances and describe the contribution
of each of the papers in this book in these three areas.

KEYWORDS: reservoir simulation, mathematical models, partial differential
equations, numerical algorithms

1 Introduction

The objective of reservoir simulation is to understand the complex chemical
and physical fluid flow processes occurring in an underground reservoir suf-
ficiently well so as to be able to predict the fate and optimize remediation
of groundwater contaminants. Toward that end, one must be able to pre-
dict the performance of the reservoir under various remediation schemes. To
do this, a model of the reservoir and its flow processes must be constructed
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c© Springer-Verlag Berlin Heidelberg 2000



2 Chen and Ewing

to yield information about the complex phenomena accompanying different
remediation strategies.

There are four major stages to the modeling process. First, a physi-
cal model of the flow processes is developed incorporating as much geology,
chemistry, and physics as is deemed necessary to describe the essential pheno-
mena. Second, a mathematical formulation of the physical model is obtained,
usually involving coupled systems of nonlinear, time-dependent partial dif-
ferential equations. Third, once the properties of the mathematical model,
such as existence, uniqueness, and regularity of the solution, are sufficiently
well understood, a discretized numerical model of the mathematical equa-
tions is produced. A numerical model is determined that has the required
properties of accuracy and stability and that produces solutions representing
the basic physical features as well as possible without introducing spurious
phenomena associated with the specific numerical scheme. Finally, a com-
puter code capable of efficiently performing the necessary computations for
the numerical model is developed. The total modeling process encompasses
aspects of each of these four intermediate steps.

The modeling process is not completed with one pass through these four
steps. Once a computer code has been developed which gives concrete quanti-
tative results for the total model, this output is compared with corresponding
measured observations of the physical process. If the results do not match
well, one iterates back through the complete modeling process, changing the
various intermediate models in ways to obtain a better correlation between
the physical measurements and the computational results. Often, many ite-
rations of this modeling loop are necessary to obtain reasonable models for
the highly complex physical phenomena describing contaminant remediation
processes.

The trends in reservoir modeling are contained in three broad topics: 1)
obtaining better reservoir descriptions and incorporating these descriptions
in reservoir simulators, 2) modeling the complex multiphase flow processes
and developing accurate discretization schemes for these models, and 3) de-
veloping algorithms that can exploit the potential of the emerging computing
architectures (particularly the potential parallelism of the parallel/vector ar-
chitectures). We will briefly discuss these major trends in this paper and
describe the contribution of each of the papers in this book in these areas.
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2 Reservoir Characterization

The processes of both single and multiphase flow involve convection, or phy-
sical transport, of fluids through a heterogeneous reservoir. The equations
used to simulate this flow at a macroscopic level are variations of Darcy’s law.
Darcy’s law has been derived via a volume averaging of the Navier-Stokes
equations [85], which govern flow through the reservoir at a microscopic or
pore-volume level. Reservoirs themselves have scales of heterogeneity ran-
ging from pore-level to field scales. In the standard averaging process for
Darcy’s law, many important physical phenomena which may eventually go-
vern the macroscopic flow are lost. The further averaging of the reservoirs
and fluid properties necessary to use grid blocks of the size of 10–102 meters
in field-scale simulators further complicates the modeling process. Certain
techniques have been developed to address these scaling problems. One of
them is discussed in Arbogast’s paper in this book on scaling up fine grid
information to coarse scales in an approximation to a nonlinear two-phase
flow problem in porous media.

3 Model Equations for Reservoir Flow

Although the techniques that we will discuss apply equally well to the reco-
very of hydrocarbon and the transport of contaminants through the saturated
or unsaturated soil zones, we will describe the multiphase flow processes in
the terminology of transport of contaminants in groundwater.

The simplest and the most popular is the model of fully saturated incom-
pressible reservoirs. In this case the water (or the liquid) phase occupies the
whole pore space and the flow is due to the nonuniform pressure distribu-
tion. The mathematical formulation is based on the mass balance equation
and Darcy’s law (see, e.g., [7, 69])

∇ · (ρu) = F and u = −K
µ

(∇p− ρg) in Ω, t > 0, (3.1)

where Ω ⊂ R3 represents a reservoir, u is the volumetric flux of water, F is
the source or sink of fluid, ρ is the fluid density, K is the absolute permeability
tensor, µ is the dynamic fluid viscosity, p is the fluid pressure, and g is the
acceleration vector due to gravity.

Darcy’s law provides a relation between the volumetric flux in the mass
conservation equation and the pressure in the fluid. This relation is valid for
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viscous dominated flows which occur at relatively low velocities.
The transport of a contaminant that is dissolved in the water is described

by the following equation:

∂(θc)
∂t

+ ∇ · (ρuc) − ∇ · (θD∇c) + βθc = G(c) in Ω, t > 0, (3.2)

where c is the concentration of the contaminant, D is the dispersion tensor,
β is the reaction rate, θ = φρ, φ is the porosity, and G is the source/sink
term. The form of the diffusion/dispersion tensor D is given by

D = dmI + |u| [dlE(u) + dt(I − E(u))] ,

where Eij(u) = uiuj/|u|2, dm is the molecular diffusion coefficient, and dl

and dt are the longitudinal and transverse dispersion coefficients, respectively.
In general, dl ≈ 10dt, but this may vary greatly with different soils, fractured
reservoir, etc. Also, the viscosity µ in equation (3.1) is assumed to be deter-
mined by some mixing rule. In addition to equations (3.1) and (3.2), initial
and boundary conditions are specified. The flow at injection and production
wells is modeled in equations (3.1) and (3.2) via point or line sources and
sinks.

When either an air or vapor phase or a nonaqueous phase liquid contami-
nant (NAPL) is present, the equations describing two phase, immiscible flow
in a horizontal reservoir are given by

∂(φρwSw)
∂t

− ∇ ·
(
K
ρwkrw

µw
∇(pw − ρwg)

)
= qwρw,

∂(φρaSa)
∂t

− ∇ ·
(
K
ρakra

µa
∇(pa − ρag)

)
= qaρa,

(3.3)

where the subscripts w and a refer to the water and air phases, respectively,
Si is the saturation, pi is the pressure, ρi is the density, kri is the relative
permeability, µi is the viscosity, and qi is the external flow rate, each with
respect to the ith phase. The saturations sum to unity and thus one of them
can be eliminated. The pressure between the two phases is described by the
capillary pressure

pc(Sw) = pa − pw.

Although formally the system in equations (3.1) and (3.2) seems quite
different from system (3.3), the latter system may be rearranged in a form
which very closely resembles the former system. To use the same basic si-
mulation techniques in our sample computations to treat both miscible and
immiscible displacement, we will follow the ideas of Chavent [17].
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The global pressure p and total velocity v formulation of a two-phase
water (w) and air (a) flow model is given by the following equations [30]:

Saca
dp

dt
+ ∇ · v = −∂φ(p)

∂t
+ q(x, Sw, p),

v = −Kλ(∇p− Gλ),

φ
∂Sw

∂t
+ ∇ · (fwv − G1 − D(Sw) · ∇Sw) = −Sw

∂φ(p)
∂t

+ qw,

(3.4)

where G1 = Kλaqw(ρa − ρw)g. The global pressure and total velocity are
defined by

p =
1
2
(pw + pa) +

1
2

∫ Sw

Sc

λa − λw

λ

dpc

dξ
dξ and v = vw + va,

where pc(Sc) = 0. Further, d/dt ≡ φ(∂/∂t) + va/Sa · ∇, λ = λw + λa is the
total mobility, and λi = kri/µi, i = w, a, is the mobility for water and air.
The gravity force Gλ and capillary diffusion term D(S) are expressed as

Gλ =
λwρw + λaρa

λ
g and D(Sw) = −Kλafw

dpc

dSw
, (3.5)

and the compressibility ca and fractional flow of water fw are defined by

ca =
1
ρa

dρa

dpa
and fw =

λw

λ
.

We note that in this formulation the only diffusion/dispersion term is capil-
lary mixing described by equation (3.5).

The equations presented above describe multiphase and multicomponent
flow in reservoirs. They can be used to simulate various production stra-
tegies in an attempt to understand and optimize hydrocarbon recovery or
remediation strategies for contaminant removal. However, to use these equa-
tions effectively, parameters that describe the soil, rock, and fluid properties
for the particular reservoir application must be input into the model. The
relative permeabilities, which are nonlinear functions of the water saturation,
can be estimated via laboratory experiments using reservoir cores and resi-
dent fluids. In the groundwater literature, often both the specific storativity
θ = ρwSw and the relative permeabilities are estimated using parameter fit-
ting of certain function forms (see, e.g., van Genuchten [80]). The popularity
of the van Genuchten fits comes from the fact that they produce smooth,
differentiable functions that are easy to handle numerically. Similarly, fluid
viscosities are relatively easy to obtain. However, the permeability tensor
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K, the porosity φ, the capillary pressure curve pc(Sw), and the diffusion and
dispersion coefficients are effective values that must be obtained from local
properties via scaling techniques. In addition, the inaccessibility of the re-
servoir to measurement of even the local properties increases the difficulties.
See [49, 52, 53, 73, 84] and the references contained therein for a survey
of parameter estimation and history-matching techniques which have been
applied.

Even if complete information is known about the reservoir properties in
a highly heterogeneous reservoir, the problem of how to represent this reser-
voir on coarse-grid blocks of different length scales still remains. The power
of supercomputers must be brought to bear for simulation studies using ho-
mogenization and statistical averaging to represent fine-scale phenomena on
coarser grids.

Most of the papers in this book deal with the model equations presented
in this section; other papers handle slightly different flow equations such as
the elastic porous medium model by Chen-Ewing-Lyons-Qin-Sun-Yale, the
non-Darcy well models by Garanzha-Konshin-Lyons-Papavassiliou-Qin, the
lattice Boltzmann models for energy equations by Y. Li, the non-Newtonian
flow by Ming-Shi, the omega equations by Villatoro-Garcia-Lafuente, and the
Volterra integral equations of the first kind for the determination of capillary
pressure functions by Subbey-Nordtvedt and Wang-Xiao. The mathematical
and numerical techniques developed here can be possibly extended to more
complicated model equations [24, 25, 33]. Error analysis for the numerical
methods described in this paper for equation (3.4) has been carried out in
[23, 26, 29].

4 Mathematical Results

The differential equations presented in the previous section have been studied
in the past few decades. Existence of weak solutions to these equations
under the assumption that the fluids are incompressible has been established
[1, 2, 3, 18, 20, 28, 66, 70, 71]. Recently, uniqueness and regularity of the weak
solutions has been studied [20, 21]. The degeneracy and strong coupling of
these differential equations makes it very hard to study them. In particular,
these mathematical properties for compressible fluids have not been obtained
yet. Also, due to the degeneracy and strong coupling, the solutions do not
have much regularity [20, 21]. Any attempt to obtain error estimates for the
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numerical methods described in this paper and other papers in this book for
these differential equations has to respect the minimum regularity [29].

5 Mixed Methods
for Accurate Velocity Approximations

There are two major sources of error in the methods currently being utilized
for finite difference discretizations of equation (3.4). The first occurs in the
approximation of the fluid pressure and velocity. The second comes from
the techniques for upstream weighting to stabilize the saturation equation in
(3.4). In this section, we describe the mixed finite element method for the
accurate approximation of the total velocity v. Some alternate upstream-
weighting techniques developed from a finite element context were presented
in Ewing et al. [50].

Among the disadvantages of the conforming discretizations are the lack of
local mass conservation of the numerical model and some difficulties in com-
puting the phase velocities needed in the transport and saturation equations.
The straightforward numerical differentiation is far from being justifiable in
problems formulated in a highly heterogeneous reservoir with complex geo-
metry. On the other hand, the mixed finite element method [14] offers an
attractive alternative. In fact, this method conserves mass cell by cell and
produces a direct approximation of the two variables of interest–pressure and
velocity. Below we explain briefly the mixed finite element method for the
pressure equation.

To describe the mixed method we introduce two Hilbert spaces

W = L2(Ω), V =
{
ϕ ∈ L2(Ω)3, ∇ · ϕ ∈ L2(Ω)

}
.

The pressure equation is written in the following mixed weak form: Find
(p,v) ∈ W × V such that

(Av,ϕ) − (p,∇ · ϕ) = (Gλ,ϕ) ∀ ϕ ∈ V , t > 0,

(C(p, Sa)
∂p

∂t
, ψ) + (∇ · v, ψ) = (f(p, Sw), ψ) ∀ ψ ∈ W, t > 0,

(5.1)

with p(0) ∈ L2(Ω) being the given initial pressure, where C(p, Sa) = Saca

and A = (Kλ)−1. We note that A is always symmetric and positive definite
which leads to a well defined problem. This is in contrast to system (3.3)
where the relative permeability krα vanishes when the phase α is absent in
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some subregion of Ω. We note that if there were nonhomogeneous boundary
conditions on ∂Ω they should be added to the right-hand side (f(p, Sw), ψ).
Corresponding changes in the bilinear forms in the left-hand side should be
introduced in the case of Robin boundary conditions. Obviously, equation
(5.1) forms a nonlinear problem. To solve it, one can use the Picard linea-
rization (see, e.g., [18]) or any other feasible approach.

We triangulate the domain Ω into elements, say, simplexes, rectangular
parallelepipeds, and/or prisms, with characteristic diameter h. Let Wh ⊂ W

and V h ⊂ V be the Raviart-Thomas-Nedelec [76, 75], the Brezzi-Douglas-
Fortin-Marini [12], the Brezzi-Douglas-Marini [13], the Brezzi-Douglas-Durán-
Fortin [11], or the Chen-Douglas [22] mixed finite element space associated
with the triangulation and time discretization tn = n∆t, n = 0, 1, . . .. The
mixed finite element solution (Pn,V n) ∈ Wh × V h satisfies

(AnV n,ϕh) − (∇ · ϕh, P
n) = (Gn

λ,ϕh) ∀ ϕh ∈ Vh,

1
∆t

(Cn(Pn − Pn−1), ψh) + (∇ · V n, ψh) = (fn, ψ) ∀ ψh ∈ Wh,
(5.2)

with P 0 ∈ Wh expressed through given initial datum.
This is an implicit in time Euler approximation of a nonlinear problem

which can be solved by Picard or Newton iterations. Obviously, one can
easily formulate the Crank-Nicolson scheme.

The resulting system of linear equations has the form of a saddle point
problem defined on a pair of finite dimensional spaces Wh and V h:

(
A BT

B −D

) (
V n

Pn

)
=

(
F
G

)
,

where F ∈ V h and G ∈ Wh are given and Pn ∈ Wh and V n ∈ V h represent
the unknown approximate solution on the time level tn. Here A : V h 7→ V h is
a linear symmetric and positive definite operator, the linear map BT : Wh 7→
V h is the adjoint of B : V h 7→ Wh, and D : Wh 7→ Wh is either (1/∆t)M
with M similar to the mass matrix in Wh for time dependent problems or
0 for steady state problems. The existence and uniqueness of a solution is
guaranteed by the fact that the pair of spaces (Wh,V h) satisfies the inf-sup
condition of Babuška-Brezzi [14].

This is an indefinite system with a large number of unknowns. Such
type of systems is more difficult to solve compared with the definite systems.
However, the popularity of the mixed method has increased considerably as
a consequence of the progress made in recent years in developing efficient
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algorithms for solving this indefinite system (see, e.g., [4, 9, 10, 19, 31, 32,
34, 56, 64, 65, 77]). The mixed method for approximating accurately the
total velocity v is used in this paper. This method is further examined
and exploited in the papers by Arbogast, Douglas-Pereira-Yeh, Garanzha-
Konshin-Lyons-Papavassiliou-Qin, Huang-Spagnuolo, Ming-Shi, Qin-Wang-
Ewing-Espedal, Wang-Li, Russell, D. Yang, and Yuan in this book.

6 Characteristics-Based Techniques

In multiphase or multicomponent flow models, the convective, hyperbolic
part is a linear function of the velocity. An operator-splitting technique has
been developed to solve the purely hyperbolic part by time stepping along the
associated characteristics [40, 54, 55, 78]. We first obtain the non-divergence
form of equation (3.2) with θ = 1 by using the product rule for differentiation
on the ∇ · (uc) term and applying equation (3.1) to obtain

φ
∂c

∂t
+ u · ∇c− ∇ · (D∇c) = q(c̃− c) . (6.1)

Next, the first and second terms in equation (6.1) are combined to form a
directional derivative along what would be the characteristics for the equation
if the tensor D were zero. The resulting equation is

∇ · (D∇c) + q(c̃− c) = φ
∂c

∂t
+ u · ∇c ≡ φ

∂c

∂τ
. (6.2)

The system obtained by modifying equations (3.1) and (3.2) in this way is
solved sequentially. An approximation for u is first obtained at time level
t = tn from a solution of equation (3.1) with the fluid viscosity µ evaluated
via some mixing rule at time level tn−1. Equation (3.1) can be solved by
the mixed finite element method for a more accurate fluid velocity as in the
last section. Let Cn(x) and Un(x) denote the approximations of c(x, t) and
u(x, t), respectively, at time level t = tn. The directional derivative is then
discretized along the “characteristic” mentioned above as

φ
∂c

∂τ
(x, tn) ≈ φ

Cn(c) − Cn−1(x̄n−1)
∆t

, (6.3)

where x̄n−1 is defined for an x as

x̄n−1 = x− Un(x)∆t
φ

. (6.4)
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This technique is a discretization back along the “characteristic” generated by
the first-order derivatives from equation (6.2). Equations (6.3) and (6.4) are
useful if the characteristics do not change much in each time step. In general,
several “micro” steps may be necessary to trace accurately the characteristic
back through a full time step. Although the advection-dominance in the ori-
ginal equation (6.2) makes it non-self-adjoint, the form with the directional
derivative is self-adjoint and discretization techniques for self-adjoint equati-
ons can be utilized. This modified method of characteristics (MMOC) can be
combined with either finite difference or finite element spatial discretizations.

In multiphase flow, the convective part is nonlinear. A similar opera-
tor-splitting technique to solve the saturation equation in (3.4) needs redu-
ced time steps because the pure hyperbolic part may develop shocks. An
operator-splitting technique has been developed for multiphase flow [35, 36,
37, 43, 44, 45] which retains the long time steps in the characteristic solution
without introducing serious discretization errors.

When the gravity term is ignored and the porosity of the reservoirs does
not change with time in equation (3.4), the operator splitting gives the fol-
lowing set of equations (with S = Sw):

φ
∂S̄

∂t
+

d

dS
fm(S̄) · ∇S̄ ≡ φ

dS̄

dτ
= 0, tm ≤ t ≤ tm+1, (6.5)

and

φ
∂S

∂τ
+ ∇ · (bm(S)S) − ∇ · (D(S)∇S) = q(x, t), tm ≤ t ≤ tm+1, (6.6)

with proper initial and boundary conditions. As noted earlier, the saturation
S is coupled to the pressure/velocity equations, which are solved by the mixed
finite element method described in the last section.

The splitting of the fraction flow function into the two parts fm(S)+b(S)S
is constructed [44] such that fm(S) is linear in the shock region, 0 ≤ S ≤
S1 < 1, and b(S) ≡ 0 for S1 ≤ S ≤ 1. Further, equation (6.5) produces the
same unique physical solution after a shock has been completely formed as

∂S

∂t
+ ∇ · (fm(S) + b(S)S) = 0, (6.7)

with an entropy condition imposed. This means that, for a fully developed
shock, the characteristic solution of equation (6.5) always produces a unique
solution and, as in the single-phase case, we may use long time steps ∆t
without loss of accuracy.
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The solution of equation (6.6) via a variational method leads to the fol-
lowing Petrov-Galerkin equations:

B(Sm
h , ϕi)≡ (φSm+1

h , ϕi) − (
∆tb(x, tm)Sm+1

h ,∇ϕi

)
+

(
∆tD(x, tm)∇Sm+1

h ,∇ϕi

)
= (gm

h (x, tm), ϕi), i = 1, 2, . . . , N, Sm
h ∈ Mh, ϕi ∈ Nh,

(6.8)

where Mh and Nh are the trial and test spaces spanned by {θi} and {ϕi}, i =
1, 2, . . . , N , respectively. B(·, ·) given by equation (6.8) is a nonsymmetrical
bilinear form with spatially-dependent coefficients.

To obtain equation (6.8), we have used the characteristic solution from
equation (6.5) to approximate (∂/∂τ)S and the nonlinear coefficients in equa-
tion (6.6). The nonsymmetry in the bilinear form B(·, ·) is caused by the
nonlinearity of the convective part of the equation, represented by the term
b(S)S. This term balances the diffusion forces in the shock region after a
traveling front has been established.

Unfortunately, the MMOC techniques described above generally do not
conserve mass. Also, the proper method for treating boundary conditions in a
conservative and accurate manner using these techniques is not obvious. Re-
cently, Celia, Russell, Herrera, and Ewing have devised Eulerian-Lagrangian
localized adjoint methods (ELLAM) [16, 68], a set of schemes that are defined
expressly for conservation of mass properties.

The ELLAM formulation was motivated by localized adjoint methods [15,
67], which are one form of the optimal test function methods [6, 37, 39, 44].
We briefly describe these methods. Let

Lu = f, x ∈ Σ = Ω or (x, t) ∈ Σ = Ω × J

denote a partial differential equation in space or space-time, where J is the
time interval of interest. Integrating against a test function φ, we obtain the
weak form ∫

Σ
Luφdω =

∫
Σ
fφdω.

If we choose test functions φ to satisfy the formal adjoint equation L∗φ = 0
and φ = 0 on the boundary, except at certain nodes or edges denoted by
`i, then integration by parts (the divergence theorem in higher dimensions)
yields ∑

i

∫
`i

uL∗φdω =
∫

Σ
fφdω.
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Various different test functions can be used to focus upon different types of
information. Herrera has built an extensive theory around this concept; see
[67] for references. The theory is quite general and can deal with situations
where distributions do not apply, such as when both u and φ are disconti-
nuous.

As in the work of Demkowitz and Oden [39], we want to localize these
test functions to maintain sparse matrices. Certain choices of space-time test
functions which are useful for linear equations of the form (3.2) have been
described in [39, 79].

The ELLAM techniques have been extended to a wide variety of appli-
cations [33, 38, 57, 58, 59, 60, 61, 62, 63, 81, 82, 83]. Optimal order error
estimates have been developed for advection [59], advection-diffusion [62, 82],
advection-reaction [57, 58, 59, 61, 62, 83], and advection-diffusion-reaction
[60, 81] systems. These techniques are further studied and applied in the pa-
pers by DeVore-Wang-Liu-Xu, Qin-Wang-Ewing-Espedal, Wang-Al-Lawatia,
and Wang-Liang-Ewing-Lyons-Qin in this book.

Recently, in the study of computational geosciences, a new locally con-
servative Euler-Lagrangian method (LCELM) was introduced by Douglas,
Pereira, and Yeh [42]. This technique is an extension of the characteristic-
mixed method for transport-dominated diffusion processes introduced by Ar-
bogast and Wheeler [5]. The extension properly treats nonlinear problems.
It was shown [42] that the LCELM technique is superior to the MMOC and
the modified method of characteristics with adjust advection (MMOCAA)
[41] techniques. The LCELM conserves mass locally, the MMOCAA does it
globally, and the MMOC does not at all. The LCELM technique is further
considered in the papers by Douglas-Pereira-Yeh and Huang-Spagnuolo in
this book. Both the LCELM and characteristic-mixed techniques in [5] can
be formulated in the ELLAM framework.

Because of its simplicity, the MMOC technique is still popular. It is
being applied for compressible flow problems in the papers by Cheng-Wang,
D. Yang, Yu-Wu, Yuan, and Zhao in this book.

7 Local Grid-Refinement
and Domain Decomposition Techniques

Many time-dependent fluid flow problems involve both large-scale processes
and highly localized phenomena that are often critical to the overall chemi-
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cal and physical behaviors of the flows. For large-scale applications, it is
frequently impossible to use a uniform grid which is sufficiently fine to re-
solve the local phenomena without yielding numbers of unknowns that will
overburden even the largest of today’s supercomputers. Since these local
processes are often dynamic, efficient numerical simulation requires the abi-
lity to perform dynamic self-adaptive local grid refinement. The need for
adaptive techniques has provided the impetus for the development of local
grid-refinement software tools, some of which are used in day-to-day applica-
tions for small- to mid-size problems. Software and engineering tools capable
of dynamic local grid refinement need to be developed for large-scale, fluid
flow applications. The adaptive grid-refinement algorithms must also be clo-
sely matched with the architecture features of the new advanced computers
to take advantage of possible vector and parallel capabilities.

Normally, local refinement must be performed if a fluid interface is lo-
cated within the coarse-grid block to resolve the solution there. A slightly
different strategy is to make the region of local refinement big enough so that
we can use the same refinements for several of the large time steps. This local
patch refinement technique [8, 27, 51, 74] has proved to be very effective for
obtaining local resolution around fixed singular points such as wells in a reser-
voir. Adaptive grid-refinement techniques utilizing the patch technique have
been presented in several surveys (see, e.g., [46, 47]). The patch technique
has been incorporated efficiently in existing multiphase industrial reservoir
simulation codes. Results for the SPE Comparison projects number 1 and 2
were presented in [48]. The local refinement was both efficient and effective
since excellent results were obtained without destroying the efficiency of the
original codes.

The difficult problem with these techniques is the communication of the
solution between the fine and coarse grids. The domain decomposition tech-
nique described in [72] gives accurate and efficient treatment of the commu-
nication problem. General domain decomposition techniques are applied and
analyzed for flow problems in the papers by Alboin-Jaffré-Roberts-Wang-
Serres, Bastian-Chen-Ewing-Helmig-Jakobs-Reichenberger, Li-Ma, Ma-Zhu,
Reme-Oye-Espedal-Fladmark, Sheen, Shi-Xu, D. Yang, and H. Zhang in this
book.
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Domain Decomposition for Some Transmission
Problems in Flow in Porous Media

Clarisse Alboin Jérôme Jaffré
Jean E. Roberts Xuewen Wang

Christophe Serres

Abstract

A variety of models are considered: one-phase flow in a porous
medium, two-phase flow in a porous medium with two rock types,
and one-phase flow in a porous medium with fractures. For each of
these models the domain of calculation is divided into subdomains
corresponding to the physics of the problem. Then it is shown how
to rewrite the problems as interface problems to use nonoverlapping
domain decomposition.

KEYWORDS: porous media flow, domain decomposition

1 Introduction

Domain decomposition methods have been studied for the most part as al-
gebraic tools for solving problems on parallel machines: see [10] for a review
of these methods. However, in many models of flow in porous media ari-
sing from environmental problems in the subsurface as well as from reservoir
simulation, the domain of calculation is naturally divided into subdomains
corresponding to the physics of the problem. Therefore, it is reasonable
to construct nonoverlapping domain decomposition methods which can take
into account the coupling of the physical phenomena taking place in the sub-
domains. In these methods one rewrites the global problem as a problem
with unknowns on the subdomain interfaces.

After presenting the single phase flow in §2, we show in §3 and §4 how it
applies to more complex problems: two-phase flow in a porous medium with
two rock types and one-phase flow in a porous medium with fractures.
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Ω1 Ω2Γ

Figure 1: The domain Ω divided into two subdomains Ω1 and Ω2.

2 Single Phase Darcy Flow

We consider first the simple case of an incompressible single phase flow in a
porous medium. The flow is governed by the equations

div ~ϕ = 0, ~ϕ = −K ~∇p, in Ω, (2.1)

where Ω is a polygonal domain. The unknowns ~ϕ and p are the Darcy velocity
and the fluid pressure and the coefficient K is the absolute permeability which
may depend on x ∈ Ω. To equations (2.1) we add the boundary conditions

p = pd on ∂ΩD, ~ϕ · ~n = qd on ∂ΩN , (2.2)

where ~n denotes the outward normal to Ω. ∂ΩD is the part of the boundary
of Ω supporting Dirichlet boundary conditions and ∂ΩN the part supporting
Neumann boundary conditions, with ∂Ω = ∂ΩD ∪ ∂ΩN .

Now we divide the domain Ω into two polygonal subdomains Ω1 and Ω2

and we denote by Γ the interface between the subdomains: Γ = Ω1 ∩ Ω2 (see
Fig. 1).

If we denote by (~ϕi, pi), i = 1, 2, the restriction of the solution of the
system of equations (2.1) and (2.2) to the subdomain Ωi, then we have

div ~ϕi = 0, ~ϕi = −Ki
~∇pi in Ωi,

pi = pd on ∂Ωi ∩ ∂ΩD, ~ϕ · ~ni = qd on ∂Ωi ∩ ∂ΩN ,
(2.3)

with the transmission conditions

p1 = p2, ~ϕ1 · ~n1 = ~ϕ2 · ~n2 on Γ. (2.4)

Here ~ni is the outward normal to Ωi. These conditions express continuity of
the pressure and mass conservation.

Let us now discretize the subdomains Ωi with a mesh Ti of triangles or
parallelograms. To simplify we will assume that the two subdomain meshes
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are conforming in the sense that their union forms a regular discretization of
the whole domain Ω. We denote by Ei the set of edges associated to Ti.

To approximate the problem we use the Raviart-Thomas mixed finite ele-
ments of lowest order [9, 1]. For this purpose we introduce the approximation
spaces

~Xi(g) = {~v ∈ ~RT 0(Ωi) | ~v · ~ni = g on ∂Ωi ∩ ∂ΩN},

Mi = {q ∈ L2(Ωi) | q|C ∈ P0(C), C ∈ Ti}, N =
∏
E∈Γ

P0(E).

Here ~RT 0(Ωi) denotes the Raviart-Thomas space of lowest order [8]; functions
in this space are uniquely defined by their flux through the edges of Ei. The
Darcy velocity ~ϕi is calculated in this space. P0 denotes the space of constants
and Mi and N are spaces of piecewise constant functions defined on Ωi and
on Γ respectively. The pressure pi inside Ωi is approximated in Mi and
the pressure on Γ denoted by λ is approximated in N . We will use the same
notation for the approximating functions as for the solution of the continuous
problem and we assume now that the boundary data functions pd and qd are
constant on each interval of the discretized boundary ∂Ω.

To solve the problem by nonoverlaping domain decomposition techniques
we follow ideas from [5] to reduce the problem in Ω to an interface problem
on Γ. We introduce Dirichlet-to-Neumann operators Si associated to each
subdomain Ωi as follows. Given λi in N we solve the problem

Find ~ϕi ∈ ~Xi(qd), pi ∈ Mi such that∫
Ωi

div~ϕi = 0,∫
Ωi

K−1~ϕi · ~v −
∫

Ωi

pi div~v +
∫
∂Ωi∩∂ΩD

pd ~v · ~ni

+
∫

Γ
λi ~v · ~ni = 0, ∀~v ∈ ~Xi(0).

(2.5)

Then we define Si by
Si(λi) = ~ϕi · ~ni |Γ . (2.6)

Our problem can now be rewritten as the interface problem

Find λi ∈ N, i = 1, 2, such that λ1 = λ2, S1(λ1) + S2(λ2) = 0. (2.7)

The first equality corresponds to pressure continuity while the second corre-
sponds to mass conservation (see equation (2.4)). The Dirichlet-to-Neumann
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operators Si are affine. Denote by Si the linear part of Si and by Ŝi the
constant part: Si(λi) = Si(λi) + Ŝi. With λ = λ1 = λ2, the domain decom-
position method is reduced to the linear problem

Find λ ∈ N such that (S1 + S2)λ = F (2.8)

where F = Ŝ1 + Ŝ2. One can now apply a conjugate gradient method to
calculate λ. Preconditionners have been studied. For instance a Neumann-
Neumann preconditionner has been presented and analyzed in [6]. For the
case of a decomposition with many subdomains where some do not touch the
boundary of Ω, the balancing domain preconditionner is robust with respect
to strong variations of the permeability K [7, 3].

In the following sections we show how these domain decomposition tech-
niques apply to a variety of situations.

3 Two-Phase Flow with Two Rock Types

3.1 Formulation of the Problem

We consider two-phase incompressible flow and we assume that the domain Ω
is divided into two subdomains Ωi, each subdomain corresponding to a rock
type. This means that not only are the porosity and the absolute permeability
different in Ω1 and in Ω2 but the relative permeability and capillary pressure
curves are also.

Two-phase flow is formulated in terms of a saturation equation and a
pressure equation using the global pressure [2]. We assume the flow to be
incompressible and we neglect gravity.

The saturation equation expresses volume conservation for the wetting
phase (which is equivalent to mass conservation since the flow is assumed to
be incompressible), so inside each subdomain Ωi we have

Φi
∂Si
∂t

+ div ~ϕwi = 0,

~ϕwi = ~ri + ~fi, ~ri = −Kiai(Si)~∇Si, ~fi = Kibi(Si)~ϕi,
(3.1)

where Si = Swi is the saturation of the wetting phase (0 < Si < 1 ). Here
Φi and Ki denote the porosity and the absolute permeability, and ~ϕi is the
total Darcy velocity, the sum of the Darcy velocities of the wetting and the
nonwetting phases:

~ϕi = ~ϕwi + ~ϕnwi.
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The coefficients ai and bi depend on the mobilities kwi and knwi and the
capillary pressure pci which are functions of the saturation:

ai =
kwi knwi

kwi + knwi

dpci
dS

, bi =
kwi

kwi + knwi
.

The capillary pressure is pci = pnwi − pwi where pnwi and pwi denote the
pressures in the nonwetting and wetting phases.

Plugging the first equation of (3.1) into the second, one obtains for sa-
turation equation a nonlinear parabolic equation of diffusion-advection type.
The vector ~ri, the diffusive contribution to ~ϕwi, is due to capillary effects and
~fi, the advective contribution to ~ϕwi, depends on the total Darcy velocity ~ϕi

which is given by the pressure equation that we now describe.
The pressure equation expresses the conservation of the total volume of

the two phases. Since the flow is assumed to be incompressible this takes the
form

div ~ϕi = 0, ~ϕi = −Kidi(Si)~∇pi, (3.2)

where the global pressure pi is given by

pi =
1
2
(pwi + pnwi) + γi(S). (3.3)

The coefficients γi and di are functions of the saturation S:

γi =
∫ S

0
(bi(S) − 1

2
)
dpci
dS

, di = kwi + knwi.

Continuity of the phase pressures pwi and pnwi implies that the capillary
pressure pci, and consequently the saturation Si, is continuous, and that the
global pressure pi is also continuous (see definition (3.3)). Also, because of
phase conservation, the normal components of the phase Darcy velocities
~ϕwi and ~ϕnwi, and consequently the normal components of the total Darcy
velocity ~ϕi, are continuous across any hypersurface.

Now we come to the transmission condition across Γ and we assume here
for sake of simplicity that the two capillary pressure curves have the same
endpoints.

Across the interface Γ we still have phase conservation and continuity of
the phase pressures. This latter condition implies that the capillary pres-
sure is continuous since it is the difference of the phase pressures, and that
the quantity p − γ is continuous (see equation (3.3). Thus for the pressure
equation we have the transmission conditions

p1 − γ1(S1) = p2 − γ2(S2), ~ϕ1 · ~n1 = ~ϕ2 · ~n2. (3.4)
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This implies that in general the global pressure p is discontinuous across Γ.
The second equation of (3.4) enforces conservation of the global mass of the
two phases.

For the saturation equation the transmission conditions are

pc1(S1) = pc2(S2), ~ϕw1 · ~n1 = ~ϕw2 · ~n2 on Γ. (3.5)

Thus the saturation is discontinuous in general; the second equation enforces
conservation of the mass of the wetting phase. One should note that the first
equation is a nonlinear transmission condition for the saturation.

3.2 The Pressure Equation

To equations (3.2) we add boundary conditions (2.2). Equation (3.4) shows
that the situation differs now from that in §2 in that the pressure p is dis-
continuous across Γ with a given jump.

We discretize with the same ideas as in §2, and we introduce the Dirichlet-
to-Neumann operator Si which associates to λi ∈ N the flow rate ~ϕi ·ni where
~ϕi is the solution of

Find ~ϕi ∈ ~Xi(qd), pi ∈ Mi such that∫
Ωi

div~ϕi = 0,∫
Ωi

(Kidi(Si))−1~ϕi · ~v −
∫

Ωi

pi div~v +
∫
∂Ωi∩ΓD

pd ~v · ~ni

+
∫

Γ
(γi(Si) + λi) ~v · ~ni = 0, ~v ∈ ~Xi(0).

(3.6)

With this definition of the Dirichlet-to-Neumann operators the problem re-
duces again to problems (2.7) and (2.8). In this case λ represents p − γ(S).

3.3 The Saturation Equation

To equations (3.1) we add the boundary conditions

S = Sd on ∂ΩSD, ~ϕw · ~n = qwd on ∂ΩSN . (3.7)

Discretizing the saturation equation is more complex than discretizing the
pressure equation. Indeed it is a nonlinear parabolic equation, often advec-
tion dominated, with a diffusion term which degenerates when the saturation
is minimum or maximum. We propose the use of a semi-implicit Euler di-
scretization in time [4]. When calculating the saturation at the n + 1 time
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level the advection term is lagging in time at the n time level and calculated
with upstream values of the saturation, while the diffusion term is calculated
at the n + 1 time level with the nonlinear coefficient a lagging also at the
previous time level. Thus at each time step one has to solve only a linear
system to calculate the saturation.

We assume that the data Sd and qwd are constant on each interval of the
boundary ∂ Ω and the approximation spaces for Si and ~ϕwi are the same as
in the previous sections. Actually since the advective part of the flow ~fi is
calculated at the previous time level, the main flow unknowm is the diffusive
part of the flow ~ri.

To simplify the presentation, we assume that the domain Ω is rectangular,
discretized with rectangles with sides parallel to the x1 and x2 coordinates
axes so we can use a cell-centered finite volume method. Also the interface
Γ is supposed to be parallel to the x2 axis as in Fig. 1. We denote by
∂ ΩiB , ∂ ΩiT , ∂ ΩiL and ∂ ΩiR the bottom, top, left and right parts of the
boundary ∂ Ωi.

With these assumptions the discretized saturation equation is

Find ~ri ∈ ~Xi(rnd ), Si ∈ Mi such that∫
C

Φi
Sn+1
i − Sni

∆t
+
∫
∂C

Fn∗
wi = 0 ∀C ∈ Ti,

Fn∗
wi = ~r n+1

i · ~nC + Fn
i ,

Fn
i = ~ϕn

i · ~nC bi(Sni−),

~r n+1
i · ~nE |E= −K

H

iEa(S
n

iE)
Sn+1
i CE1

− Sn+1
iCE2

hE
∀E ∈ Ei, E 6⊂ ∂ ΩSN ,

Sn+1
iCE1

= Sd when E ⊂ ∂ ΩSD ∩ (∂ ΩiB ∪ ∂ ΩiL),

Sn+1
iCE2

= Sd when E ⊂ ∂ ΩSD ∩ (∂ ΩiT ∪ ∂ ΩiR),

Sn+1
iCE2

= λ1 when E ⊂ Γ, i = 1,

Sn+1
iCE1

= λ2 when E ⊂ Γ, i = 2,

(3.8)

with the transmission conditions

pc1(λ1) = pc2(λ2), Fn∗
w1 + Fn∗

w2 = 0 on Γ. (3.9)

We used the notation: ~nC is the outward normal to ∂C, ~nE is the normal to
the edge E pointing in the positive x1 direction if E is vertical or pointing in
the positive x2 direction if E is horizontal, Sni− is the saturation value which
is upstream with respect to ~ϕn

i , and rnd = qnwd − Fn
i . When E is an interior
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edge we denote by CE1 and CE2 the two cells adjacent to E, K
H

iE denotes the
harmonic average of K in these two cells, S

n

iE denotes the standard average
of Sn+1

i CE1
and Sn+1

i CE2
, and hE is equal to the space discretization step. When

E is a boundary edge K
H

iE is just the value of K in the neighbouring edge
and hE is equal to half the space discretization step.

To rewrite problem (3.8) and (3.9) as an interface problem we proceed
as before and we introduce for each subdomain Ωi the linear Dirichlet-to-
Neumann operator Si defined as

Si(λi) = (~r n+1
i · ~ni + Fn

i ) |Γ,

where ~r n+1
i is calculated by solving equations (3.8) inside each subdomain

Ωi with a given λi on Γ.
Our problem can now be rewritten as the interface problem

Find λi ∈ N, i = 1, 2, such that
pc1(λ1) = pc2(λ2), S1(λ1) + S2(λ2) = 0.

(3.10)

One observes that the first equation is nonlinear and that the second equation
implies that ~r · n is discontinuous across Γ. One way to solve problem (3.10)
is to use incomplete Newton iterations with a preconditionned GMRES.
Remark. It is possible to make the diffusion term fully implicit. This would
lead to use a nonlinear Dirichlet-to-Neumann operator.

3.4 A Numerical Example

As an example we consider the displacement of a nonwetting fluid by a wet-
ting fluid with a mobility 10 times larger. The domain of calculation has
two regions with different rock types, that on the left having an absolute
permeability 5 times larger than that on the right. The injection is parallel
to the interface Γ between the two rock types (see Fig. 2).

The capillary functions are given by the standard formula

pc(S) = J(S)

√
Φ
K

and are shown in Fig. 3. Since K is larger in Ω1 than in Ω2, the capillary
pressure is smaller in Ω1 than in Ω2, so at the interface we can expect a
discontinuous saturation smaller in Ω1. Figure 4 shows numerical results at
a certain time. The picture on the right shows the total Darcy velocity field
~ϕ at a certain time. Since the injection rate is constant along the bottom
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Figure 2: An example of a displacement in a medium with two rock types.

S

pc

0

Figure 3: Capillary pressure curves, pc1 lower and pc2 upper.

boundary and the permeability is low on the right the Darcy velocity in Ω2

turns to the left in the vicinity of the injection boundary. The picture on
the left shows the saturation of the injected fluid at the same time. One
can observe the discontinuity at the interface. Note that along this interface,
where the saturation is not equal to zero, the saturation is smaller on the left
than on the right because the capillary pressure curve is smaller on the left
than on the right. However further away from this interface it is the opposite:
the saturation, as the absolute permeability, is larger on the left than on the
right.
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Figure 4: Calculated total Darcy velocity (left) and saturation (right).

4 Domain Decomposition with Fractures

4.1 Formulation of the Problem

In this section the domain Ω is divided into two subdomains Ωi, i = 1, 2, by a
fracture Γ which is also a porous medium but with higher permeability. This
fracture is assumed to have a width small compared to the size of the whole
domain, so in the numerical model it is modelled as the interface Γ between
the subdomains.

Here we are interested in understanding the interaction between the flow
in the subdomains and the flow in the fracture. We assume that the flow
in the subdomains as well as in the fracture is governed by Darcy’s law, is
incompressible and we neglect gravity.

Interaction between the fracture and the subdomains is assumed to sa-
tisfy mass conservation and pressure continuity. Thus we consider the set of
equations: in the subdomains:

div(~ϕi) = 0, ~ϕi = −Ki
~∇pi in Ωi,

pi = pf on ∂Ωi ∩ Γ, pi = pd on ∂Ωi ∩ ∂ΩD, ~ϕi · ~ni = qd on ∂Ωi ∩ ∂ΩN ,

and in the fracture:

∂ ϕf
∂ xf

= ~ϕ1 · ~n1 + ~ϕ2 · ~n2, ϕf = −σf Kf
∂ pf
∂ xf

on Γ,

pf = pf,d on ∂ ΓD, ϕf = qfd on ∂ ΓN .
(4.1)
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Here Kf , σf , pf and ϕf denote the permeability, the width, the pressure
and the flow rate in the fracture, and ∂/∂ xf denotes the derivative along the
fracture.

At the extremities of the fracture there are Dirichlet (on ∂ ΓD) or Neu-
mann (on ∂ ΓN ) boundary conditions. If ∂ ΓD touches ∂Ωi ∩ ∂ΩD then pres-
sure continuity implies that the pressure data must satisfy pd = pfd.

The first equation in (4.1) expresses mass conservation for the flow in
the fracture. The righthand side in this equation is the contribution of the
subdomain flow to the fracture flow.

We proceed now as in §2, defining the same Dirichlet-to-Neumann opera-
tors (2.5) and (2.6) and using the same notation. Moreover on Γ the pressure
pf is approximated in a space Mf of functions constant on each interval, while
the flow rate ϕf is approximated in Xf (qfd) a space of continuous piecewise
linear functions which are equal to qfd on ∂ ΓN .

This results in the interface problem

Find ϕf ∈ Xf (qfd), pf ∈ N such that∫
Γ

S1(pf ) + S2(pf ) +
∂ ϕf
∂ xf

= 0,∫
Γ
(σf Kf )−1ϕf v −

∫
Γ

pf
∂ v

∂ xf
+ (pfd v) |∂ ΓD

= 0 ∀ v ∈ Xf (q0).

Comparing with problem (2.8) we observe that the problem to be solved here
is a global equation on the interface Γ.

4.2 A Numerical Experiment

To illustrate the model we consider an ideal dimensionless problem. The
domain is an horizontal rectangular slice of porous medium, of dimensions
2 × 1, with a given pressure on the left and right boundaries and no flow
conditions on the top and bottom boundaries. In the domain the permeability
is equal to one. The domain is divided into two equally large sub-domains by
a linear fracture parallel to the x2 axis. In the fracture we chose σf Kf = 2.
For example the fracture could be of width 0.1 and could have a permeability
equal to 20.

Two cases are considered. A symmetric case where pressures on the left
and on the right boundaries of the domain are equal. So the flow is driven
only by the fracture and is symmetric. In the other case there is a pressure
drop from the right boundary to the left one. Then the flow is a combination
of the flow in the fracture and that going from left to right in the rest of



Domain Decomposition for Some Transmission Problems 33

Figure 5: Calculated Darcy’s velocity for a symmetric and a nonsymmetric flow
pattern

the porous medium. Flow in the fracture is driven by a pressure drop of 10
between the two extremities of the fracture for the first case and a pressure
drop of 5 for the second case.

Numerical results are shown on Fig. 5. Arrows represent the flow field
with length proportional to the magnitude of the velocity. The gray scale
represents the magnitude of the velocity with the lightest color corresponding
to the largest velocity. We see that there is actual flow interaction between
the fracture and the rest of the porous medium. In particular one can observe
that some fluid is coming out of the fracture and then is coming back into it.
In the nonsymmetric case we notice also that even though most of the flow
is attracted into the fracture, there is still some flow on the left part of the
domain pointing toward the left.

5 Conclusions

Studying a few examples of flow in porous media, we met a variety of trans-
mission conditions which are nonstandard: discontinuity of the scalar varia-
ble (pressure or saturation), discontinuity of the flow rate variable (capillary
flow), nonlinear transmission condition (saturation), nonlocal transmission
condition (porous medium with fractures). In spite of this variety of situati-
ons we showed that domain decomposition techniques based on Dirichlet-to-
Neumann operators can be used to set these problems as interface problems
to be solved using domain decomposition algorithms.
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[2] Chavent, G. and Jaffré, J., Mathematical Models and Finite Elements
for Reservoir Simulation, volume 17 of Studies in Mathematics and its
Applications. North Holland, Amsterdam, Amsterdam, 1986.

[3] Cowsar, L., Mandel, J., and Wheeler, M., Balancing domain decompo-
sition for mixed finite elements, Math. of Comp. 64 (1993), 989–1015.

[4] Douglas, J., Jr. and Dupont, T., Galerkin methods for parabolic equa-
tions, SINUM 7 (1970), 575–626.

[5] Glowinski, R. and Wheeler, M., Domain decomposition and mixed finite
element methods for elliptic problems, in Glowinski, R. et al., editor,
Proceedings of the First Symposium on Domain Decomposition Methods
for PDEs, SIAM, Philadelphia, 1987, 144–172.

[6] Le Tallec, P., De Roeck, Y.-H., and Vidrascu, M., Domain decomposition
methods for large linearly elliptic three dimensional problems, J. Comp.
Appl. Math. 34 (1991). 341–362.

[7] Mandel, J., Balancing domain decomposition, Comm. in Numerical
Methods in Engineering 9 (1993), 233–241.

[8] Raviart, P.-A. and Thomas, J.-M., A mixed finite element method me-
thod for second order elliptic problems, in I. Galligani and E. Magenes,
editors, Mathematical Aspects of Finite Element Methods; Lecture No-
tes in Mathematics 606, Springer, Berlin, 1977, 292–315.

[9] Roberts, J. E. and Thomas, J.-M., Mixed and hybrid methods, in P.G.
Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis Vol.II,
North Holland, Amsterdam, 1991, 523–639.

[10] Smith, B., Bjorstadt, P., and Gropp, W., Domain Decomposition: Par-
allel Multilevel Methods for Elliptic Partial Differential Equations, Cam-
bridge University Press, 1996.



Numerical Subgrid Upscaling
of Two-Phase Flow in Porous Media

Todd Arbogast

Abstract

We present an approach and numerical results for scaling up fine
grid information to coarse scales in an approximation to a nonlinear
parabolic system governing two-phase flow in porous media. The tech-
nique allows upscaling of the usual parameters porosity and relative
and absolute permeabilities, and also the location of wells and capil-
lary pressure. Some of these are critical nonlinear terms that need
to be resolved on the fine scale, or serious errors will result. Upsca-
ling is achieved by explicitly decomposing the differential system into
a coarse-grid-scale operator coupled to a subgrid-scale operator, which
we localize by imposing a closure assumption. We approximate the
coarse-grid-scale operator with a mixed finite element method that
has a second order accurate velocity coupled implicitly to the subgrid
scale. The subgrid-scale operator is approximated locally by a first
order accurate mixed method. A numerical Greens influence function
technique allows us to solve these subgrid problems independently of
the coarse-grid approximation. No explicit macroscopic coefficients
nor pseudo-functions result. The method is easily seen to be optimally
convergent in the case of a single linear parabolic equation.

KEYWORDS: upscaling, subgrid, numerical Greens functions, porous media

1 Introduction

In many physical problems, there are scales that are too fine to resolve on
any reasonable computational mesh. The objective of upscaling or homoge-
nization is to replace the governing equations by a simpler set of equations
for which the solution can be resolved on a reasonable coarse-scale mesh and
approximates the average behavior of the solution of the governing equations.
In its simplest form, one replaces the coefficients of the governing equations
with an effective or macroscopic coefficient [5]. This works well in certain
situations [9, 1], but not so well in others. Often it is necessary to change the
form of the governing equations to obtain a suitable coarse-scale model [3];
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there is no a priori reason to expect otherwise. Such is especially the case
when nonlinearities are present, since it is well known that a function of an
average is not the average of the function. Various techniques are used in
this case, including homogenization [1, 10], the definition of pseudo-functions
(altered forms of the nonlinear functions that appear in the governing equa-
tions), the use of renormalization methods [8], and many other techniques.

In terms of the simulation of flow and transport in a porous medium,
our goal for nonlinear upscaling in this paper will be to resolve some of the
finer scales in the solution directly, so that no loss of accuracy due solely to
averaging will result. We will then be able to incorporate directly into the
simulation relative and absolute permeability, porosity, capillary pressure,
and well location information on scales smaller than the computational grid.
That is, our nonlinear functions such as relative permeability and capillary
pressure need not be modified, since the fine scales have been sufficiently re-
solved. Our technique is based on numerics. We assume that a fine grid fully
represents the important physical scales, and that our computational grid is
somewhat coarser. That is, perhaps some other homogenization technique
has elevated the problem to a reasonable fine scale, but this fine scale is still
too fine to compute over.

We present our ideas by considering first a problem representing incom-
pressible, single-phase flow in a porous medium in the absence of gravity:

∇ · u = f, u = −K∇p, (1.1)

where p is the pressure, K is the permeability divided by the fluid viscosity, u
is the Darcy velocity, and f represents the wells. For simplicity, set u · ν = 0
on the external boundary.

As an outline of the paper, we present in §2 a derivation of the upscaled
equations for single phase flow, including a definition of our closure assump-
tion. In §3 we give a mixed finite element approximation of the equations
that is compatible with the closure assumption. A solution technique based
on the computation of numerical Greens functions is given in §4. The accu-
racy of the method is discussed in §5. Finally in §6, we present briefly the
two-phase problem, followed in §7 by some numerical results.
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2 Derivation of the Upscaled Equations

We rewrite (1.1) in variational form as: Find p ∈ W = L2 and u ∈ V =
H(div) such that

∫ ∇ · uw dx =
∫
f w dx ∀w ∈ W,∫

K−1 u · v dx = − ∫ ∇p · v dx =
∫
p∇ · v dx ∀ v ∈ V,

(2.1)

where H(div) = {v ∈ (L2)3 : ∇·v ∈ L2,v ·ν = 0 on the external boundary}.
Let Wc and Vc be the computationally resolvable parts of W and V, and

δW and δV the remainders. That is,

W = Wc ⊕ δW, V = Vc ⊕ δV,

p = pc + δp ∈ Wc ⊕ δW, u = uc + δu ∈ Vc ⊕ δV.

2.1 Separation of Scales

Separate the fine and δ-scales by restricting to appropriate test functions in
the variational formulation. For the coarse scale, we have∫ ∇ · (uc + δu)wc dx =

∫
f wc dx ∀wc ∈ Wc,∫

K−1 (uc + δu) · vc dx =
∫

(pc + δp) ∇ · vc dx ∀vc ∈ Vc,
(2.2)

and for the δ-scale,∫ ∇ · (uc + δu) δw dx =
∫
f δw dx ∀ δw ∈ δW,∫

K−1 (uc + δu) · δv dx =
∫

(pc + δp) ∇ · δv dx ∀ δv ∈ δV.
(2.3)

If we were to ignore the δ-scales (i.e., perform no upscaling), then we would
simply set δu = 0, δp = 0, and use only the coarse equation (2.2). Upscaling
concerns the treatment of these other terms and (2.3).

Given (uc, pc, f), we can solve for

δu = Φu(uc, pc, f) and δp = Φp(uc, pc, f), (2.4)

where Φ is a multi-linear operator. Thus (2.2) becomes
∫ ∇ · (uc + Φu(uc, pc, f))wc dx =

∫
f wc dx ∀wc ∈ Wc,∫

K−1 (uc + Φu(uc, pc, f)) · vc dx
=

∫
(pc + Φp(uc, pc, f)) ∇ · vc dx ∀vc ∈ Vc,

(2.5)

posed only on the coarse scale. We remark that no approximation has been
made yet; all scales are fully resolved by (2.3)–(2.5). However, these two
equations are intrinsically coupled, since Φ is a nonlocal operator.
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2.2 Closure Assumption (Localization Approximation)

Define a coarse computational grid and assume that

δV · ν = 0 on ∂Ec (2.6)

for each coarse element Ec. Then Φ (i.e., (2.3)) becomes a local operator:
∫

Ec
∇ · (uc + δu) δw dx =

∫
Ec
f δw dx ∀ δw ∈ δW |Ec ,∫

Ec
K−1 (uc + δu) · δv dx =

∫
Ec

(pc + δp) ∇ · δv dx ∀ δv ∈ δV|Ec
.

(2.7)
Condition (2.6) is our closure assumption. We have assumed that all net flux
between coarse elements occurs only on the coarse scale.

3 Mixed Finite Element Approximation

We assume that nested fine and coarse computational grids are used, and
let h and H be the grid spacings, respectively. The fine grid is assumed to
be essentially what is needed to fully resolve the physical scales. Generally
speaking, we envision H/h as a moderate integer (4 to 10, say).

We approximate (2.4)–(2.7) by a mixed finite element method. Other
discretizations could be employed; however, the local conservation of these
methods make them attractive for porous media simulation [12]. They ap-
proximate both the pressure and Darcy velocity directly.

⊗

⊗

⊗

⊗

⊗ ⊗

⊗ ⊗

Coarse BDDF1 velocities

×
×
×

×
×
×

× × ×
× × ×

δ-scale RT0 velocities

Figure 1: The degrees of freedom of the approximating spaces.

As depicted in Fig. 1, we approximate the coarse equation (2.5) on the
coarse grid with BDDF1 spaces (BDM1 in 2-D) [6, 7]. These spaces have
1 degree of freedom per coarse element for the pressure approximation, Wc,
and 3 degrees of freedom per coarse element face (2 per edge in 2-D) for
the velocity, Vc. They are second order accurate in H for the velocity and
first order for the pressure. The fine grid is used for the δ-equation (2.7).
We use within each coarse element RT0 spaces [11]. These have one degree
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of freedom per fine element for the pressure approximation, δW , subject
to the requirement of orthogonality to Wc that the average over the coarse
element vanishes, and RT0 has one degree of freedom per fine element face
for the velocity, δV, subject to the closure assumption (2.6). They are first
order accurate in h for both the pressure and velocity for pressures with zero
average over coarse elements and velocities with zero normal components on
coarse element boundaries.

We remark that pressure is resolved fully on the fine scale, and formally
approximated to first order in h. The fact that the BDDF1 space approxima-
tes velocity to second order compensates for the closure assumption, which
assumes all net flow between coarse elements is on the coarse scale. Without
this choice, the results degrade significantly [4].

4 Solution by Numerical Greens Functions

We present now a technique to solve the system of equations efficiently. Before
we elaborate, the outline of the technique is as follows.

1. Pre-solve for the influence of the coarse scale on the δ-scale. These are
small disjoint problems, one for each coarse element, by (2.6). These
pre-solutions are numerical Greens functions for the δ-problems (2.7).

2. Solve the coarse scale problem (2.5), accounting for the pre-solution
response of the δ-scale to the coarse scale in (2.4).

3. Post-solve to combine results to form the fine-scale solution.

Integrals over coarse elements of the formWc∗δW vanish by orthogonality.
Since ∇·Vc = Wc and ∇·δV = δW , integrals of ∇·δV∗Wc and ∇·Vc ∗δW
also vanish; thus, several terms in the equations below vanish.

4.1 Pre-solution

Locally on each coarse element Ec, let vc,i ∈ Vc have flux only at a single
degree of freedom (i = 1, ..., 18 in 3-D and i = 1, ..., 8 in 2-D). Then

uc =
∑

i

αivc,i. (4.1)

Solve the following problems for the numerical Greens functions.
Nonhomogeneous terms. Find δu0 ∈ δV and δp0 ∈ δW such that∫ ∇ · δu0 δw dx =

∫
f δw dx ∀ δw ∈ δW |Ec

,∫
K−1δu0 · δv dx =

∫
δp0 ∇ · δv dx ∀ δv ∈ δV|Ec .

(4.2)
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Influence of vc,i. For each i, find δui ∈ δV and δpi ∈ δW such that∫ ∇ · δui δw dx = 0 ∀ δw ∈ δW |Ec
,∫

K−1(vc,i + δui) · δv dx =
∫
δpi ∇ · δv dx ∀ δv ∈ δV|Ec

.
(4.3)

Note that the combinations

δu0 +
∑

i αi δui ≡ Φu(uc, f) = δu,

δp0 +
∑

i αi δpi ≡ Φp(uc, f) = δp
(4.4)

depend linearly on the (as yet unknown) nodal values of uc and on the nu-
merical Greens functions and give δu and δp solving (2.7).

4.2 Coarse Solution

Given the numerical Greens functions and the implicit representation of the
upscaling operator (4.4), we can now reformulate (2.5) as a problem for the
course unknowns only. We find uc ∈ Vc and pc ∈ Wc such that∫ ∇ · uc wc dx =

∫
f wc dx ∀wc ∈ Wc,∫

K−1(uc + Φu(uc, f)) · vc dx =
∫
pc ∇ · vc dx ∀vc ∈ Vc.

(4.5)

We rewrite this system with vc = vj using that

u = uc + δu = δu0 +
∑

i αi (vc,i + δui),

p = pc + δp = pc + δp0 +
∑

i αi δpi,
(4.6)

and using (4.2) and (4.3) with δv = δuj and orthogonality as∑
i αi

∫ ∇ · (vc,i + δui)wc dx =
∫
f wc dx,∑

i αi

∫
K−1(vc,i + δui) · (vc,j + δuj) dx

=
∫

(pc + δp0) ∇ · (vc,j + δuj) dx− ∫
K−1δu0 · (vc,j + δuj) dx.

Thus the method is similar to an “optimal test function” method where we
replace vc by vc,j + δuj ; however, we also add some nonhomogeneous terms
that improve the accuracy over such “optimal” methods.

4.3 Post-Solution

Given uc, pc, and the numerical Greens functions, compute (4.6) on the fine
scale to obtain a “fully resolved” approximation of the true solution.

5 Accuracy

Denote by ‖ · ‖ the L2-norm, and by PWc
, PWf

, and PδW the L2-projections
into Wc, the full fine grid space Wf = Wc ⊕ δW , and δW , respectively.
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If we solve the entire problem (2.1) for (uf , pf ) ∈ RT0 over the entire fine
mesh or for (uc, pc) ∈ BDDF1 (or BDM1 in 2-D) on the coarse mesh, we see
the following error estimates [11, 6, 7], where (u, p) is the true solution.

Theorem 5.1 For RT0 with no upscaling on the fine mesh, for v ∈ Vf such
that ∇ · v = PWf

f ,

‖K−1/2(u − uf )‖ ≤ inf
v

‖K−1/2(u − v)‖ ≤ Ch, ‖p− pf‖ ≤ Ch.

For BDDF1 (or BDM1) with no upscaling on the coarse mesh, for v ∈ Vc

such that ∇ · v = PWc
f ,

‖K−1/2(u − uc)‖ ≤ inf
v

‖K−1/2(u − v)‖ ≤ CH2, ‖p− pc‖ ≤ CH.

The upscaling technique displays elements of both estimates above. It is
easy to prove the following error estimate.

Theorem 5.2 For BDDF1 (or BDM1) upscaled with the RT0 subgrid ap-
proximation, for v ∈ Vc + δV such that ∇ · v = PWf

f , vc ∈ Vc such that
∇ · vc = PWcf , and δv ∈ δV such that ∇ · δv = PδW f ,

‖K−1/2(u − (uc + δu))‖ ≤ infv ‖K−1/2(u − v)‖
≤ inf ū,vc,δv

{‖K−1/2(ū − vc)‖ + ‖K−1/2(u − ū − δv)‖}
,

‖p− pc‖ ≤ CH.

While it is difficult to interpret the velocity error, we should expect better
bounds than in Theorem 5.1; that is, we should expect the velocity error to
be second order. Our numerical results suggest that this is indeed the case,
and that the error has in fact no simple form (as indicated in the theorem).
We consider two test cases in which K = 1 on a unit square domain and
we use Dirichlet boundary conditions and f defined from the imposed true
solution p(x, y) = xy3 + x2y cos(xy) or 1/(1 + exp(10x + 10y2 − 3y − 5)),
respectively.

It is readily apparent from the data in Table 1, that if H/h is fixed, the
error in pressure is O(H) = O(h), and the error in velocity is O(H2) =
O(h2), as we would expect. However, if H/h is not fixed, the results are
much less predictable. For the tests reported and a few more conducted,
the best fit of the L2-error in u is E1

u = 150H2 + 360H1/2h3/2 and E2
u =

1000H2 + 8000H1/4h7/4, respectively for the two cases, and for the pressure
p, the error is E1

p = 0.36h + 0.0003H and E2
p = 0.4h + 0.0006H1.7h−0.7,
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respectively. Thus the error depends in a complicated way on the solution
and probably on H/h, but p is first order and u is second order accurate.

It is interesting to note from Table 1 that the error in the pressure is
dominated by the fine mesh size, nearly independently of the coarse mesh.

Case 1 Case 2
1/h 1/H Pressure Velocity 1/h 1/H Pressure Velocity
10 10 0.0359 5.63 10 10 0.0438 173.64
20 20 0.0180 1.42 20 20 0.0219 47.08
40 40 0.0090 0.36 40 40 0.0109 12.03
80 80 0.0045 0.16 80 80 0.0055 3.03
10 2 0.0359 46.79 10 2 0.0440 413.35
20 4 0.0180 11.14 20 4 0.0220 185.70
40 8 0.0090 2.76 40 8 0.0109 43.25
80 16 0.0045 0.69 80 16 0.0055 10.82

160 4 0.0023 8.97 80 2 0.0095 273.92
160 8 0.0022 2.26 80 4 0.0060 159.92
160 16 0.0022 0.60 80 8 0.0055 36.50
160 32 0.0022 0.18 80 16 0.0055 10.82
10 2 0.0359 46.79 10 2 0.0440 413.35
20 2 0.0180 41.09 20 2 0.0230 310.56
40 2 0.0091 39.39 40 2 0.0134 281.47
80 2 0.0046 38.94 80 2 0.0095 273.92

Table 1. Some L2-errors for Cases 1 and 2.

6 Two-Phase Immiscible, Incompressible Flow

We now turn to a nonlinear problem describing the flow of two immiscible,
incompressible fluids in a porous medium, such as oil and water. For phase
j = w, o (i.e., water and oil), let sj , uj , and pj be the phase saturations,
Darcy velocities, and pressures. Let s = sw = 1 − so, φ be the porosity,
K the absolute permeability, g the gravitational constant, and z the depth.
The mobilities are related to the relative permeabilities and fluid viscosities
as λj(s) = kr,j(s)/µj and λ(s) = λw(s) + λo(s), and Pc(s) = po − pw is the
capillary pressure. Conservation of mass of each phase gives the governing
equations. After reformulation, we obtain the following (see, e.g., [2]).

Pressure equation:

∇ · u = f ≡ fw + fo, u = −Kλ(s)(∇p− ρ(s)∇z),
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where the global pressure and density are

p = po −
∫ s

0

λw(σ)
λ(σ)

P ′
c(σ) dσ and ρ(s) =

λw(s)
λ(s)

ρw +
λo(s)
λ(s)

ρo.

Saturation equation:

φ
∂s

∂t
+ ∇ · uw = fw(s), uw = −K∇q(s) + γ(u, s),

where the “complementary” potential and γ are

q(s) = − ∫ s

0
λw(σ)λo(σ)

λ(σ) P ′
c(σ) dσ,

γ(u, s) = λw(s)
λ(s) u −K λw(s)λo(s)

λ(s) (ρo − ρw)g∇z.
We use sequential time splitting, a backward Euler time discretization,

and integration-by-parts (3 times) to obtain the following variational form
and time approximation for ∆t > 0 and time levels tn = n∆t.
Pressure equation:∫ ∇ · un w dx =

∫
fn w dx,∫

(λ(sn−1)K)−1un · v dx =
∫
pn ∇ · v dx+

∫
ρ(sn−1)∇z · v dx.

Saturation equation: (wherein w ∈ Wf = Wc ⊕ δW )
∫

Ef
φ sn−sn−1

∆t w dx+
∫

Ef
∇ · ψn w dx+

∫
∂Ef

γ(un, sn
up) · ν w ds

=
∫

Ef
fn

w(sn)w dx,∫
K−1ψn · v dx =

∫
q(sn) ∇ · v dx,

where ψn = −K∇q(sn), un
w = ψn+γ(un, sn), and we use one-point upstream

weighting on the term involving γ.
As in the single-phase case, we separate the solution into coarse and fine

scales Vc ⊕ δV or Wc ⊕ δW :

v = vc + δv, u = uc + δu, ψ = ψc + δψ,
w = wc + δw, p = pc + δp.

Because the saturation equation is parabolic, it turns out that we do not
need to decompose s ∈ Wf .

The pressure equation is linear and independent of the saturation equa-
tion, given sn−1. We can solve for the upscaled un and pn as above.

We linearize the saturation equation with Newton-Raphson, and solve
for changes in sn and ψn, given un, using numerical Greens functions as in
the linear case above. Upstream weighting on the fine scale destroys our
localization assumption. To circumvent this, we simply use the old Newton
result for the upstream value when it traces out of a coarse element.
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7 Some Numerical Examples

We present two 2-D examples to illustrate our upscaling technique. In both,
we have a square domain with uniform rectangular grids. The initial water
saturation is 0.2. An injection well is placed in the lower left corner injecting
water at a rate of 0.2 m2/day, and a production well is in the adjacent corner.
Time steps vary from 1 day initially to 25 days near the end of the simulations.
The porosity is 0.25, but the permeability is heterogeneous.

7.1 Example 1

In this example, we have a 40 meter by 40 meter domain with a 40 × 40 fine
grid. The base 10 logarithm of the permeability field is shown in Fig. 2.
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Figure 2: The log of the permeability field for Example 1.
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Figure 3:Fine-scale saturation at 100 and 500 days for Example 1.

As can be seen in Figs. 3–4, the upscaling procedure approximates the
saturation quite well. Here we use a 5×5 coarse grid, so on each coarse block,
we have an 8 × 8 subgrid for the δ-problems. The coarse solution (Fig. 5)
completely fails to resolve the flow and location of the wells.
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Figure 4:5× 5 Upscaled saturation at 100 and 500 days for Example 1.
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Figure 5:Coarse-scale saturation at 100 and 500 days for Example 1.

In Figs. 6–7, we show the results of upscaling with 2 × 2 and 8 × 8 coarse
grids (20 × 20 and 5 × 5 subgrids). Both perform quite well. The coarsest
example does a very good job near the well, but the performance degrades
later in time a bit as the flow reaches the middle of the domain.

The number of degrees of freedom used in these examples is given in
Table 2. The coarse solution is woefully inadequate; however, for the cost of
a global problem of the same size, we can upscale to a very reasonable level
of resolution.

Coarse grid
2 × 2 5 × 5 8 × 8

Coarse Velocity 8 80 224
Upscale Velocity 3048 2880 2784
Fine Velocity 6240 6240 6240
Coarse Pressure 4 25 64
Upscale Pressure 1600 1600 1600
Fine Pressure 1600 1600 1600

Table 2. Number of degrees of freedom for Example 1.
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Figure 6:2× 2 Upscaled saturation at 100 and 500 days for Example 1.
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Figure 7:8× 8 Upscaled saturation at 100 and 500 days for Example 1.

7.2 Example 2

In the second example, we have a 24 × 24 meter domain with a 24 × 24 fine
grid and a 4 × 4 coarse grid. The base 10 logarithm of the permeability is
depicted in Fig. 8. It has two high permeability streaks, akin to fractures.
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Figure 8:The log of the permeability field for Example 2.
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Fig. 9 shows that the saturation is very difficult to resolve. The upscaling
technique does a reasonable job following the flow into the first high per-
meability streak. The coarse solution in Fig 10, however, completely misses
the high permeability streaks. It shows an overall tendency to flow right to
left rather than the proper direction down to up. The number of degrees of
freedom used in this example is given in Table 3.
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Figure 9:Fine-scale and 4× 4 Upscaled saturation at 20 days for Example 2.
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Figure 10:Coarse-scale saturation at 20 days for Example 2.

Velocity Pressure
Coarse 48 16
Upscale 1008 576

Fine 2208 576

Table 3. Number of degrees of freedom for Example 2.

Some timing results are given in Table 4. The pressure equation is solved
with Jacobi preconditioned conjugate gradients, the saturation equation by
Jacobi preconditioned orthomin, and the upscaling numerical Greens func-
tions by a direct solver. The time to compute the 24 × 24 fine scale solution
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is quite high, since the problem is very poorly conditioned. In contrast, the
4 × 4 coarse problem is solved easily. In this example, the upscaled problem
takes about as long to solve as the coarse problem; computing the numerical
Greens functions takes little extra time and gives a much improved solution.

Steps Fine Upscale Coarse
1 2:03 0:10 0:08
2 1:48 0:09 0:08

3–10 11:32 1:10 1:05
11–20 13:29 1:28 1:21
21–36 2:21 2:13
37–48 35:47 2:02 1:52
49–58 1:42 1:33
59–65 30:26 1:21 1:14
66–72 1:21 1:14
73–76 19:22 0:46 0:42
77–84 38:48 1:34 1:25

Table 4. Some timing results for Example 2.

8 Conclusions

Our upscaling approach improves the resolution of the computed solution. It
allows recovery of fine-scale pressure, velocity, and saturation, so it incorpo-
rates fine-scale information and nonlinearities directly, thereby circumventing
the need to define pseudo-functions. The technique resolves positions of wells
within grid blocks, is efficient to compute, has good convergence properties,
can be applied at each time step of a time dependent problem, and can be
applied to a nonlinear problem during a Newton linearization step.
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Numerical Simulation of Multiphase
Flow in Fractured Porous Media
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Abstract

The simulation of realistic multiphase flow problems in porous me-
dia requires efficient solution methods and means for handling the com-
plicated structure of the media. The numerical toolbox UG has been
developed to be able to use the approaches–multigrid, unstructured
grids, adaptivity, and parallel computing–for a wide range of applica-
tions. An extensive library of discretization schemes has been imple-
mented with UG in the MUFTE project. In this paper we describe
a finite volume method for two-phase flow in fractured porous media
and present results for the parallel multigrid solution of a gas-water air
sparging problem.

KEYWORDS: multiphase flow, fractures, numerical toolbox, unstructured
grids, multigrid, parallel computing

1 Introduction

The simulation of realistic problems from environmental engineering, oil re-
servoirs, and waste disposal sites requires the combination of different nume-
rical methods. To overcome the difficulties associated with the complicated
structure of porous media and the highly nonlinear behavior of multiphase
systems, a combination of unstructured grids, adaptive local grid refinement,
multigrid methods, and parallel computing is necessary. However, the com-
plexity of a program with such a combination increases with each component
by several orders of magnitude when compared to a structured sequential
program. UG [2] provides a toolbox that combines these approaches for
workstations and parallel computers and paves the way to use them for mul-
tiphase flow problems. Based on the program MUFTE, several applications
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for the simulation of multiphase, multicomponent processes have been imple-
mented.

After an overview of a two-phase flow problem, we present a finite volume
method that is part of MUFTE/UG and its extension for discontinuous and
fractured porous media. We focus on the simulation of gas-water systems
in the fractured media and present results for a gas-water simulation on
parallel computers, gas infiltration into fractured porous media, and gas flow
in single fractures. Future work will involve applications of MUFTE/UG to
multiphase, multicomponent flows with mass interchange between phases.

2 The Numerical Toolbox UG

The main objective of the UG project is to provide a fundamental framework
on which complex applications can be built. The basic building blocks of its
software include geometry representation, mesh generation and its modifica-
tion, discretization, solvers for linear and nonlinear systems, mesh refinement
and error estimation, and tools for postprocessing and visualization. Since
full support in all generality for each of these items is hardly possible within
the framework of a research project, the UG project focuses on unstructured
grids, local grid refinement, robust multigrid methods, and parallel compu-
ting on MIMD-type supercomputers. These concepts are present throughout
the whole design of UG. The modules of UG are shown in Fig. 0.

Figure 0: The modular structure of UG.

The dynamical distributed data (DDD) layer [4] is responsible for creating
and maintaining the distributed unstructured mesh data structure and the
associated vectors and sparse matrices. DDD can migrate object copies of
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a node to other processors, for example, while automatically maintaining its
references to neighboring objects and the corresponding interface lists. To
ensure portability and efficiency, DDD uses the parallel processor interface
(PPIF), which provides the low-level message passing function based on MPI,
PVM, and several other vendor specific message passing systems.

The domain manager handles geometry representation, based on two dif-
ferent implementations. The first implementation, the “standard domain”,
is based on a piecewise description of the boundary. Each boundary segment
is defined by a mapping from a parameter space Λ ⊂ Rd−1 to Rd, d = 2, 3.
In the second implementation, the “linear geometry model” (LGM), each
boundary segment is an unstructured triangular mesh in 3D space. It is use-
ful for complicated domains that do not allow for a parameterization. The
output devices implement support for graphical user interfaces on X11 and
Macintosh and deliver graphic outputs to files in the postscript and PPM
format. The “low” module provides the basic function, like file I/O and ti-
ming. CHACO [8] is a graph partitioning package that is included for load
balancing of the grid.

The grid manager is at the heart of UG. It is responsible for the creation
and modification of the unstructured mesh data structure. For the mesh
creation process, two grid generators are part of UG; the 3D mesh generator
was developed by Schöberl [15]. The notion of hierarchical grids is an im-
portant part of the UG design. It is assumed that the domain geometry is
simple enough to be stored on each processor and that an initial mesh can
be generated that is much coarser than the final mesh used to compute the
solution. The grid hierarchy is also used for the construction of finite element
spaces used in the multigrid method. To ensure flexibility in the construction
of the finite element spaces, degrees of freedom can be associated with nodes,
edges, and element faces (in 3D). Grids can consist of elements of several ty-
pes, triangles and quadrilaterals in 2D and tetrahedrons, pyramids, prisms,
and hexahedrons in 3D. Meshes can be locally refined and derefined, based
on geometrical criteria or through error estimators.

The graphics module on the top of the grid manager is responsible for
the visualization of meshes and solutions in 2D and 3D. The visualization
is parallelized and can be sent to any output device (screen or file). The
linear algebra implements sparse matrix-vector operations and iterative sol-
vers. The numerical support includes functions commonly needed in finite
element and finite volume discretization schemes.
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Linear and nonlinear solvers and time-stepping schemes are located in
the numerical method module. Multigrid can be used as a preconditioner
for Krylow subspace methods (Bi-CGstab, GMRES); several smoothers are
available for the multigrid. Numerical algorithms are implemented as a set of
classes which can be used directly or from which the application programmer
can inherit to add new components or replace existing ones. This ensures
flexibility and expandability together with the graphical user interface and
the scripting language which drive UG applications.

UG has been used as a framework for applications from several fields:
linear elasticity, elastoplacticity, Navier-Stokes equations, and density driven
flow. In this paper we focus on its application to multiphase flow, which is
explained in the next section.

The multiphase, multicomponent module MUFTE includes several appli-
cations. The processes which can be implemented via MUFTE may have up
to three phases and up to three components. The phase transitions have been
taken into account via Henry’s, Raoult’s, and Dalton’s Law, and miscible flow
can be thus treated. Nonisothermal processes can also be described, taking
the energy equation into account. Future work will involve the addition of a
more general phase behavior package to MUFTE.

3 Governing Equations for Two-Phase Flow

We consider the flow of two immiscible fluids in a porous medium Ω ⊂ Rd,
d = 2, 3. Let T = (0, T ) be the time interval of interest. We focus on the
phases water and gas, but the consideration below is also valid for a general
wetting phase and a non-wetting phase, each consisting of a component.

Conservation of mass for both phases α = w, g is expressed by

∂(Φ%αSα)
∂t

+ ∇ · (%αuα) = %αqα in Ω × T ,

where Φ(x) is the porosity, Sα(x, t) the saturation, %α(pα) the density, pα(x, t)
the pressure, uα(x, t) the macroscopic velocity, and qα(x, t) the source/sink
term of phase α. The two phases completely fill the void space of the porous
medium:

Sw + Sg = 1 .

Darcy’s law is used to describe the fluid flow at a macroscopic level

uα = −krα

µα
K(∇pα − %αg),
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where K(x) is the absolute permeability tensor, krα(x, Sα) the relative per-
meability, µα(pα) the dynamic viscosity of phase α, and g the gravitational
vector. The relative permeability obeys the constraint 0 ≤ krα(Sα) ≤ 1.

The pressure difference between two phases is expressed by the macros-
copic capillary pressure

pc(x, t) = pg(x, t) − pw(x, t) .

Although 0 ≤ Sw, Sg ≤ 1, the wetting fluid can not be removed from a
porous medium by pure displacement and the non-wetting fluid can not be
replaced completely once it has entered the medium. If we do not take phase
transition effects into account, a certain amount of each phase remains in the
pore space, the residual saturation Sαr.

The effective saturations of the two phases are given by

S̄w =
Sw − Swr

1 − Swr − Sgr
, S̄g =

Sg − Sgr

1 − Swr − Sgr
,

where 0 ≤ S̄α ≤ 1 and S̄w + S̄g = 1.
In multiphase systems, pc is a function of the wetting phase saturation:

pc = pc(Sw). One often used capillary pressure function is the Brooks-Corey
capillary pressure function:

pc(Sw) = pdS̄
− 1

λ
w .

In the Brooks-Corey function the parameter pd refers to the entry pressure
of the porous medium (the pressure required to displace the wetting phase
from the largest pores) and λ is related to the pore size distribution of the
material. Typical values for λ range from 0.2 to 3. Small λ values describe
single grain size materials while large λ values indicate highly non-uniform
materials.

The relative permeabilities krα depend on the saturation of phase α. They
can be evaluated by the Brooks-Corey relative permeability functions

krw(Sw) = S̄
2+3λ

λ
w , krg(Sg) = S̄2

g

(
1 − (

1 − S̄g

) 2+λ
λ

)
.
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4 Discretization

4.1 Phase Pressure-Saturation Formulation

For the equations in the previous section only two out of the four unknowns
Sw, Sg, pw, and pg can be chosen as independent unknowns. Substituting

Sw = 1 − Sg, pg = pw + pc(1 − Sg),

we obtain the (pw, Sg) formulation in T × Ω:

∂(Φ%w(1 − Sg))
∂t

+ ∇ · (%wuw) − %wqw = 0,

∂(Φ%g(Sg))
∂t

+ ∇ · (%gug) − %gqg = 0,
(4.1)

with Darcy’s velocities uw and ug given by

uw = −krw

µw
K(∇pw − %wg),

ug = −krg

µg
K(∇pg + ∇pc(1 − Sg) − %gg).

(4.2)

Initial and boundary conditions of Neumann or Dirichlet type are

pw(x, 0) = pw0(x) , Sg(x, 0) = Sg0(x) in Ω ,

pw(x, t) = pwd(x, t) on Γwd , Sg(x, t) = Sgd(x, t) on Γgd ,

%wuw · n = φw(x, t) on Γwn , %gun · n = φg(x, t) on Γgn .

In a similar way a (pn, Sg) formulation can be derived. While flux type
boundary conditions can be specified for both phases in both formulations,
Dirichlet type boundary conditions can only be applied for variables present
in these equations. A further comparison of the equations reveals that the
(pw, Sg) formulation should be used if S̄g is bounded away from 1 while the
(pg, Sw) formulation should be used if S̄w is bounded away from 1.

4.2 Finite Volumes for Two-Phase Flow

To ensure the applicability of the discretization method for equations (4.1)
and (4.2) to a wide range of applications, a fully implicit and fully coupled
finite volume method is chosen. The method is described in detail in [3], so
we restrict ourselves to the core ideas.

The finite volume method requires the construction of a secondary mesh.
In the present case of vertex centered finite volumes, the secondary mesh
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Figure 1: Secondary mesh and notation for control volumes.

B is constructed by connecting element barycenters with edge midpoints as
shown in Fig. 1 in 2D. In 3D, the element barycenters are first connected to
element face barycenters and these are then connected with edge midpoints.
Each control volume Bi belongs to a grid vertex vi. The intersection of a
control volume Bi with element k is denoted by bki (sub-control volume).

We use the index set I = {1, . . . , N}, with N being the number of vertices
of the grid and the index sets Iαd = {i ∈ I | xi 6∈ Γαd} for vertices that are
not part of a Dirichlet boundary. Along with these index sets, we define
appropriate subsets of the standard conforming finite element space Vh ⊂
H1(Ω)

Vh = {v ∈ C0(Ω) | v is (multi-) linear on t ∈ Eh}
and the non-conforming test space Wh

Wh = {w ∈ L2(Ω) | w is constant on each Bj ∈ B}.

For Vh and Wh, we have

∀i, j ∈ I ∀ϕi ∈ Vh : ϕi(xj) = δij and ∀i, j ∈ I ∀ψi ∈ Wh : ψi(xj) = δij .

The spaces Vαhd and Wαhd used for the discretization depend on time t:

Vαhd(t) = {v ∈ Vh | v(xi) = Sαd(xi, t), i ∈ I\Iαd},
Wαhd = {w ∈ Wh | w(xi) = 0, i ∈ I\Iαd}.

The weak formulation of the present problem is: Find pwh(t) ∈ Vwhd(t) and
Sgh(t) ∈ Vghd(t) such that, for wαh ∈ Wαhd (α = w, g) and t ∈ T ,

∂

∂t
Mαh(pwh(t), Sgh(t), wαh) +Aαh(pwh(t), Sgh(t), wαh)

+Qαh(t, pwh(t), Sgh(t), wαh) = 0,
(4.3)
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with the accumulation terms Mαh, the internal flux terms Aαh, and the
source/sink and boundary flux terms Qαh being given by

Mαh(pwh(t), Sgh(t), wαh) =
∑

i∈I wαh(xi)
∫

Bi
Φ%αSαh dx,

Aαh(pwh(t), Sgh(t), wαh) =
∑

i∈I wαh(xi)
∫

∂Bi∩Ω %αuα · n ds,

Qαh(t, pwh(t), Sgh(t), wαh) =
∑

i∈I wαh(xi)
(∫

∂Bi∩Γαn
φα ds− ∫

Bi
%αqα dx

)
,

where in the first equation Swh is replaced by 1 − Sgh.
The precise evaluation of the quantities on the discretized domain is ex-

plained in detail in [1, 3]. The interior flux term is evaluated using an up-
winding scheme. As an example, we show the accumulation term for the gas
phase:

Mnh(pwh, Sgh, ψi) =
∫
bi

Φh%nhSgh dx ≈
∑

k∈E(i)

Φi%n,iSg,imeas(bk
i ) ,

where Φi, %n,i, and Sg,i are the discrete values of the corresponding quantities
at grid vertex i.

5 Interface Conditions

Media with discontinuous properties, such as fractured media, require a spe-
cial treatment of the solution at these discontinuities. Consider a medium Ω
that consists of two subregions ΩI and ΩII , with different absolute permea-
bilities. For an isotropic medium, we have K(x) = k(x)I, with k = kI in
ΩI and k = kII in ΩII . If kI > kII , then ΩI represents a coarse material
compared to ΩII . Other properties, such as the porosity, may be different in
the subregions as well.

We assume that Ω is initially fully saturated with water and that ΩII

lies above ΩI . Fig. 2 shows the sketch of typical Brooks-Corey capillary
pressure functions. If a gas phase is entering the medium from below, it will
eventually reach the interface between ΩI and ΩII , but will only enter ΩII

if the capillary pressure is large enough. This pressure is called the threshold
pressure or non-wetting phase entry pressure; it corresponds to pd in the
Brooks-Corey capillary pressure functions. In Fig. 2, the saturation that has
to be reached in order for the gas phase to enter ΩII is indicated by S∗

w.
If both fluids are present in both regions and we consider a point on the

interface, we can look at this point from either side of the interface. If we
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Figure 2: Grid at an interface and capillary pressure for discontinuous media.

choose to look from ΩI , the wetting phase saturation is SI
w (with SI

w < S∗
w

since the fluid is already present in both regions). Since the capillary pressure
is an intensive variable, it is a continuous function on the whole medium Ω,
so pI

c(S
I
w) = pII

c (SII
w ). Consequently, the extensive variable saturation is

discontinuous at the interface.
To incorporate this discontinuity into the (pw, Sg) formulation, note that

no mass is lost or produced at the interface: %wuw · n and %gug · n are
continuous across the interface. Furthermore, we use the extended capillary
pressure condition [16] for points on the interface. It uses the threshold satu-
ration S∗

w that can be found from pI
c(S

∗
w) = pII

c (1) and defines SII
n in terms

of the inverted capillary pressure function for ΩII if S∗
w has been reached

from ΩI :

SII
n =

{
0, SI

g < S∗
g = 1 − S∗

w,

1 − (pII
c )−1(pI

c(1 − SI
g )), SI

g ≥ S∗
g = 1 − S∗

w.

This ensures that if SI
g < 1 −S∗

w we have Sg = 0 in ΩII ; i.e., if the threshold
pressure has not been reached, the non-wetting phase will not enter. Note
that the capillary pressure is only defined if both phases exist and will only be
defined in ΩII if the non-wetting phase has entered. See [5] for a theoretical
and numerical examination.

The interface conditions are incorporated into the discretization by ima-
gining duplicated vertices on the interface as shown on the left in Fig. 2.
The grid has to resolve interfaces with element edges or faces in order for the
interface conditions to work.

The pressure pw is continuous and its value is identical for both vertices.
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To represent discontinuous values for the saturation in vI
i and vII

I , we define
the vector pcmin, with pcmin,i = mink∈E(i) pc(xk, 1−Sn,i), where E(i) is the
set of indices of all elements having vertex vi as a corner. Using pcmin, we
can compute the saturation Sn at vertex vi with respect to element ek:

Ŝn,i,k =




Sn,i, if pc(xk, 1 − Sn,i) = pcmin,i,

0, pcmin,i < pc(xk, 1),
1 − S, where S solves pc(xk, S) = pcmin,i.

The evaluation of saturation with respect to ek for any x ∈ ēk is done by

Snh|ek
(x) =

∑
m∈V (k)

Ŝn,m,kϕm(x),

where V (k) is the set of all vertices of element k. Also, all quantities that de-
pend on the saturation are now evaluated element-wise (dependent on Ŝn,i,k).

6 3D Air Sparging

The first example simulates the bubbling of air in a 3D heterogeneous porous
medium. The domain is 5 meters high, about 4 by 5 meters wide and contains
three lenses with different sand properties. The finite volume method with
interface conditions in the (pw, Sg) formulation is used.

The boundary conditions are pw = 105 [Pa], φn = 0 on the top boundary,
φn = φw = 0 on the sides and bottom, and φn = −3·10−3 [kg/(sm2)], φw = 0
at the inlet boundaries on the bottom. See Fig. 3 for the location of the inlet
boundaries.

Figure 3: Geometry, coarse grid and isosurface for Sg = 0.05 for 3D air sparging
problem. Solution is shown for t = 640[s] (Visualization with GRAPE).
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The fluid properties are %w = 1000 [kg/m3], %g = pg/84149.6 [kg/m3],
µw = 10−3 [Pas], and µn = 1.65 ·10−5 [Pas]. The initial values are pw(x, y) =
105 + (5 − y) · 9810.0 and Sn = 0.

The Brooks-Corey constitutive relations are used with the parameters:

Sand Φ k [m2] Swr Snr λ pd [Pa] S∗
n

0 0.40 5.04 · 10−10 0.10 0.0 2.0 1600.0 –
1 0.39 2.05 · 10−10 0.10 0.0 2.0 1959.6 0.30
2 0.39 5.62 · 10−11 0.10 0.0 2.0 2565.7 0.55
3 0.41 8.19 · 10−12 0.10 0.0 2.0 4800.0 0.80

Figure 3 shows the coarsest mesh, consisting of 1492 tetrahedral elements.
All internal boundaries are resolved by faces of the initial mesh. The mesh
is generated with NETGEN [15]. By uniform refinement, a grid hierarchy of
five levels is produced, with 6,111,232 elements and 1,040,129 nodes on the
finest grid.

Figure 3 shows on the right an isosurface of non-wetting phase saturation
Sg = 0.05 at final time T = 640 [s]. The initial time step size is ∆t = 8 [s],
so 80 time steps are needed (unless a time step reduction is enforced by the
nonlinear solver). Visualization has been done with the graphics program
GRAPE [14].

The results show that the finite volume method with interface conditions
works with 3D unstructured meshes and captures correctly the discontinuities
in the saturation that can especially be seen for the uppermost sand lense
with a relative permeability that is two orders of magnitude smaller than the
surrounding sand.

Thanks to parallel capabilities, the computations for this problem can
be carried out on a Cray T3E. Performance results can be found in the
table below for up to a million nodes (i.e., 2 million unknowns) mapped to
128 processors. The problem size is scaled with the number of processors,
yielding constant workload for each processor for all configurations. Starting
with two processors and scaling by 64 results in an almost fourfold increase
in total computation time. This can be explained by the increased number
of Newton steps on the finest mesh. We believe that this is due to the very
thin layers of air under the sand lenses.

P S # elements T itnl itlin itavg tmg

2 80 95488 10771 247 1355 5.5 3.44
16 81 763904 15201 320 1909 6.0 3.76

128 83 6111232 37297 693 4684 6.8 3.99
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The multigrid method uses a point-block Gauß-Seidel smoother and per-
forms very well as seen from the table above where we use the following
abbreviations: P the number of processors, S the number of time steps, T
the total execution time, itnl the total number of newton iterations, itlin the
total number of multigrid cycles, itavg the average number of multigrid cycles
in each Newton step, and tmg the time for one multigrid cycle in seconds.
The multigrid method scales very well with respect to the average number of
iterations and the time per iteration (parallel efficiency).

7 Discretization with Fractures

In the discretization of two-phase flow in fractured media we employ two
fundamental properties of fractures. First, due to their small width, fractures
can be discretized by means of finite elements or finite volumes of smaller
dimension. Second, if we do not consider open fractures, the fractures can
be treated as a porous medium.

Figure 4: Finite volumes for fractures.

For the discretization we assume that interfaces between subregions and
fractures are resolved by the grid. This situation is depicted in Fig. 4, where
part of a fracture and the surrounding grid is shown. Since the interface
conditions can be applied for vertices that lie on several subregions, we can
apply the method to fractures as well. Vertex vi in Fig. 4 is part of three
subregions: two matrix regions ΩI , ΩII and the fracture.

To illustrate the discretization process, the grid detail is shown twice in
Fig. 4, on the left with just the grid as it is stored and on the right with
duplicated vertices at the fracture. Note that the vertex vi still exists only
once, but in the discretization the quantities associated with it may differ
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(dependent on the element we are viewing the vertex from). Also, shown
is the secondary grid for the finite volume method. While the construction
of the secondary grid for matrix elements remains the same, additional 1D
finite volumes along the fracture in R2 and 2D finite volumes in R3 have to
be considered. In Fig. 4, two 1D elements with vi as one of their nodes are
depicted.

The weak formulation of the problem is still as in (4.3). It is only in the
evaluation of the terms Mαh, Aαh, and Qαh that we have to take into account
the increased number of finite volumes.

8 Gas Infiltration into Fractured Media

The effect of gas infiltration into a fractured medium is simulated on an
example with five fractures. The domain size is 80m× 100m; the position of
the fractures can be seen from Fig. 5.

The fluid properties are %w = 1000, µw = 10−3, %g = pg/84149.6, and
µg = 1.65 · 10−5. The Brooks-Corey constitutive relations are used with the
parameters Φ = 0.4, k = 10−8, and pd = 1000 in the matrix and Φ = 0.39,
k = 10−6, and pd = 2000 in the fracture. λ = 2 and Sgr = Swr = 0 is used
for both matrix and fracture. The fracture width is 0.04m.

The initial values are Sg = 0 and pw = (100−y)·9810.0, and the boundary
conditions are Sg = 0, φw = 0 on the north boundary, φg = 0, and hydrostatic
pressure on the sides, and φg = 0, φw = 0 on the south boundary except for
the intervals [24m, 32m] to [48m, 56m], where Sg = −0.06 [kg/(sm2)].

Figure 5: Gas infiltration into fractured domain at t = 44s, 55s and 85s.
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The problem is solved with a Newton method for the nonlinear equations
and a multigrid-preconditioned Bi-CGstab on a grid hierarchy of five levels.
The coarse grid has 91 elements and the finest grid has 27776 elements, which
is created by three uniform refinement steps and one adaptive refinement step
that only refines elements neighboring a fracture. ILU is used as a smoother
for the multigrid method. The time step size is ∆t = 1s.

Fig. 5 shows how gas infiltrates the water saturated medium and that gas
moves very fast inside the fractures once the gas phase has reached them.
At the top end of the fractures the gas phase is trapped until enough gas
is there in order for the entry pressure for the matrix to be reached; then
the matrix is infiltrated. The parameters for matrix and fractures have been
chosen such that these effects can be observed. In natural rocks, material
parameter differences between matrix and fractures are often so large that
no infiltration from the fractures into the matrix takes place.

9 Comparison of Different Approaches

The strong influence of the topography of fractures on the permeability and
on the multiphase flow behavior has been realized only in the recent years.
Recent studies of naturally fractured media [11, 12] have shown that the de-
scription of the relative permeability must account for the roughness of the
fracture walls, the fracture aperture, and the contact areas. The geostatisti-
cal model in [13] assumes that both phases can only flow simultaneously if
the fracture apertures are correlated anisotropically. A survey of other ap-
proaches for the description of relative permeability-saturation relations in
fractures can be found in [6].

In [13] the rough fractures are discretized as a field of parallel plates
with different averaged apertures aij (see Fig. 6). The permeability of each
parallel fracture is given by k = b2/12. Normalizing the fracture domain to
unit thickness, the permeability of each averaged aperture aij gets k = a3/12.
The cut-off-aperture is defined by the capillary pressure pc = (2σ cosα)/ac,
with the surface tension σ. The contact angle α is assumed to be zero.

In [12] the water phase is assumed to fill the void space between all plates
with apertures lower than the cut-off-aperture ac and the gas phase is assu-
med to fill the spaces between all plates with apertures bigger than ac. In [9]
this approach is referred to as the separation assumption.

In [9] a new aperture distribution based model is formulated. It assu-
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Figure 6: Approximation of rough fractures by parallel plates.

mes that a fraction of the plates with aij > ac is still filled with the water
phase. This fraction is given by the factor α. This assumption is called the
mix assumption. Using the mix assumption, [9] reports better results for
the relative transmissibilities and the gas saturation when the results of la-
boratory observations of a degassing experiment [10] are compared with the
predictions based on the different assumptions.

Jarsjö developed two sets of constitutive relationships based on the sepa-
ration assumption and on the mix assumption with α = 0.2 (see Fig. 7). Both
given relative permeability saturation functions have a very high gradient at
Sw ≈ 1. At this point little changes of the saturation have a big influence
on hydraulic conditions within the fracture. The factor α = 0.2 for the mix
assumption results in a residual saturation for the water phase of Swr = 0.2.

Figure 7: Comparison of capillary pressures (left) and relative permeabilities
(right) based on separation assumption (dotted) and mix assumption (line).

Based on the data in [10], different permeability fields have been generated
with the geostatistical tool SIMSET (Prof. Bardòssy, Institute for Hydraulic
Engineering, Stuttgart University; best fit shown at Fig. 8). SIMSET uses
the turning band method as the basic approach to generate geostatistical
data.

The entering of gas from the bottom of the domain is simulated based
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Figure 8: Permeability field based on stochastically generated aperture distribution
for an area of 1 m× 1 m.

on the generated permeability fields. The length of the inlet is set to be
0.02 m. The capillary pressure is computed for each plate via the Leverett
condition pelem

c = pavg
c

√
Kavg/Kelem; for the relative permeability function

no upscaling concept is established.
For both assumptions the main flow paths are given by the areas of high

permeability which are slightly connected. Neither the gas velocities shown
differ much, nor the results for the effective permeability or the pressure fields.
The most relevant differences occur in the saturations. The simulation using
the constitutive relationships based on the mix assumption results in a wider
spreading of the gas phase and in higher gradients for the saturation (see
Fig. 9).

10 Conclusions

Parallel multigrid on unstructured grids can be efficiently used for multi-
phase flow problems in porous media. The MUFTE/UG program has proven
to be successful for the simulation of realistic problems. While the current
implementation focuses on a correct representation of the capillary pressure
effect and fluid behavior at media discontinuities, a wide range of transport
problems has been little explored so far. In a cooperation with the Institute
for Scientific Computation of Texas A&M University, Department of Mathe-
matics of Southern Methodist University, and the Exxon-Mobil Technology
Company, we hope to expand the MUFTE/UG program to be able to handle
transport problems. In particular, our future work will focus on the ap-



66 Bastian, Chen, Ewing, Helmig, Jakobs, and Reichenberger

plication of MUFTE/UG to multiphase, multicomponent, multi-dimensional
flows with mass interchange between phases. Toward that end, a successful
combination of MUFTE/UG and a phase behavior package will be critical.

Sw: 0.0641 0.2564 0.4486 0.6409 0.8332 Sw: 0.0641 0.2564 0.4486 0.6409 0.8332

pg: 94971 121710 148449 175187 201926 pg: 94971 121710 148449 175187 201926

Keffg: -15.000 -13.051 -11.103 -9.154 Keffg: -15.000 -13.051 -11.103 -9.154

Figure 9: Water saturation (top), gas pressure (middle) and effective permeability
(bottom) for relationships based on separation assumption (left) and mix assump-
tion (right) at t = 3.5s.
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The Modified Method of Characteristics
for Compressible Flow in Porous Media

Aijie Cheng Gaohong Wang

Abstract

Error estimates are derived for a finite element modified method
of characteristics for a coupled system of partial differential equations
modelling compressible flow in porous media. Some new techniques
are introduced to conduct a convergence analysis. Optimal conver-
gence rate is derived in the case of molecular diffusion and dispersion.
One contribution of this paper is the demonstration of how molecular
dispersion can be treated.

KEYWORDS: compressible displacement, MMOC, FEM, convergence.

1 Introduction

The modified method of characteristics (MMOC) was first formulated for
a scalar parabolic equation by Douglas and Russell [6] and then extended
by Russell [7] to nonlinear coupled systems modelling incompressible flow in
porous media. Some improved error estimates were derived in [4]. Conver-
gence of finite element methods (FEM) with MMOC for compressible flow
was given by Yuan [9], but only molecular diffusion was considered.

In this paper we consider the model for compressible miscible displace-
ment in porous media, which includes both of molecular diffusion and disper-
sion. A scheme of FEM with MMOC is established and analyzed.

Consider the single-phase miscible displacement of one compressible fluid
by another in a porous medium. A set of equations modelling the pressure
p(x, t) and the concentration c(x, t) are given by Douglas and Roberts [5]

d(c)
∂p

∂t
+ ∇ · u = d(c)

∂p

∂t
− ∇ · (a(c)∇p) = q,

φ
∂c

∂t
+ b(c)

∂p

∂t
+ u · ∇c− ∇ · (D(c, p1, p2)∇c) = (c̄− c)q,

(1.1)
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for x ∈ Ω and t ∈ J , where Ω is a bounded domain in R2 and J = (0, T ]. We
assume that no flow occurs across the boundary

u · ν = D(c, p1, p2)∇c · ν = 0, (x, t) ∈ ∂Ω × J,

p(x, 0) = p0(x), c(x, 0) = c0(x), x ∈ Ω,
(1.2)

where ν is the outer normal to ∂Ω, ci = ci(x, t), i = 1, 2, the concentration of
ith component, c = c1 = 1−c2, u Darcy’s velocity, k = k(x) the permeability
of the rock, µ the local viscosity of the mixed fluid, φ = φ(x) the porosity
of the rock, q the source-sink term, and c̄ the specified concentration at
injection wells and c̄ = c at production wells. D is a 2 × 2 diffusion matrix,
which reflects the molecular diffusion and dispersion:

D = (Dij)2×2, Dij = Dij(c, p1, p2) ≡ Dij(x, c, p1, p2),

where p1 = ∂p/∂x1 and p2 = ∂p/∂x2. If only molecular diffusion is conside-
red, then D = φ(x)dmI, where dm is the molecular diffusivity and I is the
2 × 2 unit matrix.

Denote by z1 and z2 the compressibilities of the two components and set

a(c) = k(x)/µ(c), d(c) = φ(x)(z1c1 + z2c2), b(c) = φ(x)c1c2(z1 − z2).

For convenience, we assume the system above is Ω-periodic. Thus the no-
flow boundary conditions above can be dropped. Additionally, the following
assumptions are needed in the error analysis:

(1) There exist positive constants φ∗, φ∗, a∗, a∗, d∗, and d∗ such that

φ∗ ≤ φ(x) ≤ φ∗, a∗ ≤ a(x, c) ≤ a∗, d∗ ≤ d2(x, c) ≤ d∗,

for arbitrary x ∈ Ω, c ∈ [−ε′, 1 + ε′], and ε′ is a small positive constant.

(2) D is positive-definite; i.e., there exists a constant D∗ such that

eTD(x, c, p1, p2)e ≥ D∗|e|2,

for arbitrary x ∈ Ω, c ∈ [−ε′, 1 + ε′], (p1, p2) ∈ R2, and e ∈ R2.

(3) There exist derivatives up to second order for a(c) and Dij(c, p1, p2),
which are bounded uniformly for x ∈ Ω, c ∈ [−ε′, 1 + ε′], (p1, p2) ∈ R2.

For a finite element analysis for compressible two-phase flow, see [2].
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2 The Procedure of FEM with MMOC

Let Mhc
= Mh be a family of finite-dimensional subspaces of H1(Ω) with the

properties

inf
ψ∈Mh

{‖v − ψ‖ + hc‖v − ψ‖1 + hc(‖v − ψ‖L∞(Ω) + ‖v − ψ‖W 1∞(Ω))}
≤ M‖v‖shsc, v ∈ W s

2 (Ω), 1 ≤ s ≤ l + 1,
‖ψ‖j,∞ ≤ Mh−1

c ‖ψ‖j , ψ ∈ Mh, j = 0, 1,
‖ψ‖1 ≤ Mh−1

c ‖ψ‖, ψ ∈ Mh,

‖∇ψ‖0,∞ ≤ Mh−1
c ‖∇ψ‖, ψ ∈ Mh,

where M is independent of hc. Similarly, we define another family of finite-
dimensional subspaces of H1(Ω), Nhp

= Nh, which satisfies the same pro-
perties as Mhc

with l and hc replaced by k and hp, respectively.
Let s(x, t) be the unit vector in the characteristic direction and note that

∂c

∂s(x, t)
=

1√|u|2 + φ2
(φ
∂c

∂t
+ u · ∇c). (2.1)

Multiplying (1.1) by test functions v, z ∈ H1(Ω) and integrating by parts,
we obtain the variational form

(d(c)
∂p

∂t
, v) + (a(c)∇p,∇v) = (q, v), v ∈ H1(Ω),

(
√

|u|2 + φ2 ∂c

∂s
, z) + (D(c, p1, p2)∇c,∇z) + (b(c)

∂p

∂t
, z)

= ((c̄− c)q, z), z ∈ H1(Ω).

(2.2)

Denote by 4t the time increment and let tn = n4t, n = 0, 1, . . . , N , and
N = T/4t. If the approximation of p(x, t) and c(x, t) have been known at
tn−1, (Pn−1

h , Cn−1
h ) ∈ Nh ×Mh, we define

un−1
h = −a(Cn−1

h )∇Pn−1
h , dtf

n =
fn − fn−1

4t ,

x̂ = x− un−1
h

φ(x)
4t, f̂n−1(x) = fn−1(x̂).

Denote the approximate characteristic direction from (x, tn) to (x̂, tn−1) as
τ(x, tn). The numerical scheme of FEM with MMOC can be defined by

(d(Cn−1
h )

Pnh − Pn−1
h

4t , v) + (a(Cn−1
h )∇Pnh ,∇v) = (qn, v), v ∈ Nh,

(φ
Cnh − Ĉn−1

h

4t , z) + (D(Cn−1
h , Pn−1

h1 , Pn−1
h2 )∇Cnh ,∇z)

+(b(Cn−1
h )P

n
h −Pn−1

h

4t , z) = ((C̄nh − Cnh )qn, z), z ∈ Mh,

(2.3)
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where Ph1 = ∂Ph/∂x1, Ph2 = ∂Ph/∂x2, and C̄nh =
{
c̄n, qn > 0,
Cnh , qn < 0. First,

Pnh ∈ Nh can be solved from (2.3); then Cnh ∈ Mh can be obtained by (2.3).
Before the error analysis, we define the elliptic projections p̃ : [0, T ] → Nh

and c̃ : [0, T ] → Mh by

(a(c)∇(p− p̃),∇v) + σ(p− p̃, v) = 0, v ∈ Nh,

(D(c, p1, p2)∇(c− c̃),∇z) + λ(c− c̃, z) = 0, z ∈ Mh,
(2.4)

where λ and σ are positive constants large enough to ensure the coercivity
of the bilinear form over H1(Ω). Let

η ≡ p− p̃, π ≡ p̃− Ph, ζ ≡ c− c̃, ξ ≡ c̃− Ch.

Then,
p− Ph ≡ π + η, c− Ch ≡ ξ + ζ.

Lemma 2.1 [1, 3, 8] If k, l ≥ 1, there exists a constant M independent of h
such that

‖ζ‖ + hc‖ζ‖1 + ‖∂ζ
∂t

‖ + hc‖∂ζ
∂t

‖1 ≤ Mhl+1
c ,

‖η‖ + hp‖η‖1 + ‖∂η
∂t

‖ + hp‖∂η
∂t

‖1 ≤ Mhk+1
p ,

‖p̃‖W 1∞(J;W 1∞(Ω)) + ‖c̃‖W 1∞(J;W 1∞(Ω)) ≤ M,

‖∂2η
∂t2 ‖1 ≤ Mhkp, ‖∂3η

∂t3 ‖L∞(Ω) ≤ M.

Let us select the initial approximation P 0
h = p̃0 and C0

h = c̃0. Then,

π0 = 0, ξ0 = 0. (2.5)

Throughout the analysis, the symbol M denotes a generic constant, not the
same at different places, which is independent of all mesh parameters. Simi-
larly, ε denotes a generic small positive constant.

3 Convergence Analysis

Firstly, we establish error equations. Subtracting (2.3) from (2.2) and using
the definition of projection, we obtain

(d(Cn−1
h )dtπn, v) + (a(Cn−1

h )∇πn,∇v)

= −([d(cn)
∂pn

∂t
− d(Cn−1

h )dtpn], v) − (d(Cn−1
h )dtηn, v)

−([a(cn) − a(Cn−1
h )]∇p̃n,∇v) + σ(ηn, v).

(3.1)
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Then, let n = 1 and v = dtπ
1. It is shown that

(d(C0
h)dtπ

1, dtπ
1) + (a(C0

h)∇π1,∇dtπ1)

= −([d(c1)
∂p1

∂t
− d(C0

h)dtp
1], dtπ1) − (d(C0

h)dtη
1, dtπ

1)

−([a(c1) − a(C0
h)]∇(p̃1 − p1),∇dtπ1)

−([a(c1) − a(C0
h)]∇p1,∇dtπ1) + σ(η1, dtπ

1).

(3.2)

By ξ0 = π0 = 0 and inverse properties, we have

‖dtη1‖2 ≤ Mh2k+2
p ,

([a(c1) − a(C0
h)]∇η1,∇dtπ1) ≤ M‖c1 − c̃0‖ ‖∇η1‖ ‖∇dtπ1‖L∞

≤ M‖c1 − c̃0‖hkph−2
p ‖dtπ1‖ ≤ M(4t2 + ‖ζ0‖2) + ε‖dtπ1‖2, k ≥ 2.

Using integration by parts, we obtain

|([a(c1) − a(C0
h)]∇p1,∇dtπ1)|

≤ |([a(c1) − a(C0
h)]4p1, dtπ

1)| + |∇([a(c1) − a(C0
h)] · ∇p1, dtπ

1)|
≤ M(4t2 + ‖ζ0‖2 + ‖∇ζ0‖2) + ε‖dtπ1‖2.

By the boundedness of d and a, we have

‖dtπ1‖2 +
1

4t‖∇π1‖2 + 4t‖∇dtπ1‖2 ≤ M(4t2 + h2l
c + h2k+2

p ). (3.3)

If we try to derive a reasonable evolutionary error inequality for p(x, t)
from (3.1) which can be coupled suitably with that for c(x, t) given later,
some essential difficulties would occur unavoidably. Differently from the case
of molecular diffusion, we now establish another error equation from a new
viewpoint. Operating (3.1) by dt and taking v = dtπ

n, we obtain the error
equation

(dt[d(Cn−1
h )dtπn], dtπn) + (dt[a(Cn−1

h )∇πn],∇dtπn)
= −(dt[d(cn)

∂pn

∂t
− d(cn−1)dtpn], dtπn)

−(dt[(d(cn−1) − d(Cn−1
h ))dtpn], dtπn)

−(dt[d(Cn−1
h )dtηn], dtπn) + σ(dtηn, dtπn)

−(dt[(a(cn) − a(Cn−1
h ))∇p̃n],∇dtπn),

(3.4)

where n ≥ 2. Denote the terms on the left side as A1 and A2, and the terms
on the right side as A3, . . . , A7 in order.

The induction hypotheses are useful

‖dtπr‖L∞(Ω) ≤ 1, ‖∇πr‖L∞(Ω) ≤ 1, ‖ξr‖W 1∞(Ω) ≤ 1. (3.5)
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Let 4t = o(hp), hlc = o(hp), and k ≥ 1. From (3.3) and the inverse properties

‖dtπ1‖L∞(Ω) ≤ Mh−1
p ‖dtπ1‖ ≤ Mh−1

p (4t+ hlc + hk+1
p ) ≤ 1,

‖∇π1‖L∞(Ω) ≤ Mh−1
p ‖∇π1‖ ≤ Mh−1

p (4t+ hlc + hk+1
p ) ≤ 1.

Then from (2.5) and the above inequalities, the first equation in (3.5) is
true for r = 1, the second is true for r = 0, 1, and the third is true for
r = 0. Now, we suppose that the first and second equations in (3.5) are
true for r = 1, 2, . . . ,m− 1 and the third is true for r = 0, 1, . . . ,m− 1. We
demonstrate that (3.5) is true for r = m.

By expansion, we know

A1≥ dt(d(Cn−1
h )dtπn, dtπn) + (dtd(Cn−1

h )dtπn−1, dtπ
n)/2

−(dtd(Cn−1
h )dtπn−1, dtπ

n−1)/2 ≡ A1
1 +A2

1 +A3
1.

By the induction hypotheses and the linearity of d(c) on c, we have

|A2
1 +A3

1| ≤ M(h2l+2
c + ‖dtξn−1‖2 + ‖dtπn−1‖2 + ‖dtπn‖2),

where Jn−1 = [tn−2, tn−1]. For A2, A3, A4, and A6, we have

A2 = (a(Cn−1
h )dt∇πn,∇dtπn) + (dta(Cn−1

h )∇πn−1,∇dtπn) ≡ A1
2 +A2

2,

A1
2 ≥ a∗‖∇dtπn‖2,

|A2
2| ≤ M(h2l+2

c + ‖dtξn−1‖2 + ‖∇πn−1‖2) + ε‖∇dtπn‖2,

|A3 +A4 +A6| ≤ M(4t2 + h2l+2
c + h2k+2

p + ‖ξn−1‖2 + ‖dtξn−1‖2 + ‖dtπn‖2).

Now, only A5 and A7 are left. Divide A5 into two parts

A5 = −(dtd(Cn−1
h )dtηn, dtπn) − (d(Cn−2

h )d2
tη
n, dtπ

n) ≡ A1
5 +A2

5.

By inverse properties,

|A1
5| ≤ M(‖dtξn−1‖ ‖dtηn‖ ‖dtπn‖L∞(Ω)

+‖dtζn−1‖ ‖dtηn‖ ‖dtπn‖L∞(Ω) + ‖dtηn‖ ‖dtπn‖).

By the mean value theorem and the boundedness of ∂3η/∂t3 (Lemma 2.1),
we have

A2
5 = −(d(Cn−2

h )4t−2
∫ 4t
0 [∂η∂t (t

n−1 + t) − ∂η
∂t (t

n−2 + t)]dt, dtπn)

= −(d(Cn−2
h )4t−1

∫ 4t
0 [∂

2η
∂t2 (tn−2 + t) + 4t∂3η

∂t3 (tn−2 + θ4t+ t)]dt, dtπn),

|A2
5|≤ M(4t−1‖∂

2η

∂t2
‖2
L2(Jn−1;L2(Ω)) + 4t2 + ‖dtπn‖2).
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We can divide A7 into three parts

A7 = −(dt[a(cn) − a(cn−1)]∇p̃n,∇dtπn)
−(dt[a(cn−1) − a(Cn−1

h )]∇p̃n,∇dtπn)
−([a(cn) − a(Cn−1

h )]∇dtp̃n,∇dtπn) ≡ A1
7 +A2

7 +A3
7,

|A1
7 +A3

7|≤ M(4t2 + h2l+2
c + ‖ξn−1‖2) + ε‖∇dtπn‖2.

There exist c∗ ∈ [cn−2, cn−1] and C∗
h ∈ [Cn−2

h , Cn−1
h ] such that

dt[a(cn−1) − a(Cn−1
h )] =

∂a

∂c
(c∗)dtcn−1 − ∂a

∂c
(C∗

h)dtC
n−1
h ,

|c∗ − C∗
h| ≤ |cn−1 − cn−2| + |cn−1 − Cn−1

h | + |cn−2 − Cn−2
h |.

Then,

|A2
7| ≤ M(4t2 + h2l+2

c + ‖ξn−1‖2 + ‖ξn−2‖2 + ‖dtξn−1‖2) + ε‖∇dtπn‖2.

Multiplying (3.4) by 4t and summing that from n = 2 to n = m, if ε is taken
to be small enough, by the above estimates and (3.3), we obtain

‖dtπm‖2 +
m∑
n=1

‖∇dtπn‖24t ≤ M
(4t2 + h2l

c + h2k
p∑m

n=1(‖ξn‖2 + ‖∇πn‖2 + ‖dtξn‖2 + ‖dtπn‖2)4t), (3.6)

for m ≥ 1. This is the evolutionary error inequality for p(x, t).
Now, we turn to the concentration equation. Subtracting (2.3) from (2.2)

and taking z = dtξ
n, we see that

(φdtξn, dtξn) + (D(Cn−1
h , Pn−1

h1 , Pn−1
h2 )∇ξn,∇dtξn)

= −([φ
∂cn

∂t
+ un−1

h · ∇cn − φ
cn − ĉn−1

4t ], dtξn)

−([a(Cn−1
h )∇Pn−1

h − a(cn)∇pn] · ∇cn, dtξn)

−(φ
ζn − ζn−1

4t , dtξ
n) − (φ

ξn−1 − ξ̂n−1

4t , dtξ
n)

−(φ
ζn−1 − ζ̂n−1

4t , dtξ
n) + λ(ξn + ζn, dtξ

n) − ((ξn + ζn)q+, dtξn)

−([D(cn, pn1 , p
n
2 ) −D(Cn−1

h , Pn−1
h1 , Pn−1

h2 )]∇c̃n, dtξn)

−(b(cn)
∂pn

∂t
− b(Cn−1

h )dtPnh , dtξ
n),

where q+ = max(0, q). Multiplying this equation by 4t and summing over
1 ≤ n ≤ m, we denote the resulting terms as B1, B2, . . . , B11 from the left to
the right side. Obviously,

B1 ≥ φ∗
m∑
n=1

‖dtξn‖2.
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B2 can be decomposed as follows:

B2 ≥ 1
2

m∑
n=1

dt(D(Cn−1
h , Pn−1

h1 , Pn−1
h2 )∇ξn,∇ξn)

− 1
2

m∑
n=1

(dtD(Cn−1
h , Pn−1

h1 , Pn−1
h2 )∇ξn−1,∇ξn−1) ≡ B1

2 +B2
2 .

By ξ0 = 0 and

B1
2 =

1
2
(D(Cm−1

h , Pm−1
h1 , Pm−1

h2 )∇ξm,∇ξm) ≥ 1
2
D∗‖∇ξm‖2,

we see that

φ∗
m∑
n=1

‖dtξn‖24t+
1
2
D∗‖∇ξm‖2 ≤ B3 + . . .+B11 −B2

2 .

By estimating negative norms and integral transformations [2], we have

|B3 +B6 +B7| ≤ M4t2‖∂2τ
∂τ2 ‖2

L2(J;L2(Ω))

+M
m∑
n=1

(‖∇ξn‖2 + ‖∇ζn‖2)4t+ ε
m∑
n=1

‖dtξn‖24t,

where τ is the approximate characteristic direction from (tn, x) to (tn−1, x̂).
A direct computation leads to

|B4 +B5 +B8 +B9 +B11| ≤ M{4t2 + h2l+2
c + h2k

p

+
m∑
n=1

(‖ξn‖2 + ‖dtπn‖2 + ‖∇πn‖2)4t} + ε
m∑
n=1

‖dtξn‖24t.

The crucial is to analyze B2
2 and B10. We find that

|dtDij(Cn−1
h , Pn−1

h1 , Pn−1
h2 )|

≤ M(|dtξn−1| + |dtζn−1| + |dtcn−1| + |∇dtηn−1| + |∇dtπn−1| + |∇dtpn−1|).
By the induction hypotheses, we have

|B2
2 | ≤ M(h2l+2

c + h2k
p +

m−1∑
n=1

‖∇ξn‖24t) + ε
m∑
n=1

(‖dtξn‖2 + ‖∇dtπn‖2)4t.

To handle B10, by summation by parts and ξ0 = 0, we obtain

B10 =
m∑
n=1

(dt[D(cn, pn1 , p
n
2 ) −D(cn−1, pn−1

1 , pn−1
2 )]∇c̃n,∇ξn−1)4t

+
m∑
n=1

(dt[D(cn−1, pn−1
1 , pn−1

2 ) −D(Cn−1
h , Pn−1

h1 , Pn−1
h2 )]∇c̃n,∇ξn−1)4t

+
m∑
n=1

([D(cn, pn1 , p
n
2 ) −D(Cn−1

h , Pn−1
h1 , Pn−1

h2 )]dt∇c̃n,∇ξn−1)4t
−([D(cm, pm1 , p

m
2 ) −D(Cm−1

h , Pm−1
h1 , Pm−1

h2 )]∇c̃m,∇ξm)
≡ B1

10 +B2
10 + . . .+B4

10.



The Modified Method of Characteristics for Compressible Flow 77

It is easy to show that

|B1
10 +B3

10| ≤ M{4t2 + h2l+2
c + h2k

p +
m∑
n=1

(‖ξn‖2 + ‖∇πn‖2 + ‖∇ξn‖2)4t},
|B4

10| ≤ M(4t2 + h2l+2
c + h2k

p + ‖ξm−1‖2 + ‖∇πm−1‖2) + ε‖∇ξm−1‖2.

For B2
10, using the mean value theorem and smoothness of Dij , we have

dt[Dij(cn−1, pn−1
1 , pn−1

2 ) −Dij(Cn−1
h , Pn−1

h1 , Pn−1
h2 )]

≤ M(4t+ |dtξn−1| + |dtζn−1| + |ξn−1| + |ζn−1| + |ξn−2| + |ζn−2|
+|∇dtπn−1| + |∇dtηn−1| + |∇πn−1| + |∇πn−2| + |∇ηn−1| + |∇ηn−2|).

Then,

|B2
10| ≤ M{4t2 + h2k

p + h2l+2
c +

m∑
n=1

(‖ξn‖2
1 + ‖∇πn‖2)4t}

+ε
m∑
n=1

(‖dtξn‖2 + ‖∇dtπn‖2)4t.

Combining the above estimates and taking ε small enough, we have

m∑
n=1

‖dtξn‖24t+ ‖∇ξm‖2 ≤ M{4t2 + h2k
p + h2l

c + ‖ξm−1‖2 + ‖∇πm−1‖2

+
m∑
n=1

(‖ξn‖2
1 + ‖∇πn‖2)4t} + ε

m∑
n=1

‖∇dtπn‖24t.

Multiplying (3.6) by (M + 1), adding the result to the above inequality, and
taking ε small enough, we obtain

m∑
n=1

(‖dtξn‖2 + ‖∇dtπn‖2)4t+ ‖∇ξm‖2 + ‖dtπm‖2

≤ M{4t2 + h2k
p + h2l

c + ‖ξm−1‖2 + ‖∇πm−1‖2

+
m∑
n=1

(‖ξn‖2
1 + ‖∇πn‖2 + ‖dtπn‖2)4t}.

Observing that

‖fm‖2 − ‖f0‖2 ≤ M
m∑
n=1

‖fn‖24t+ ε
m∑
n=1

‖dtfn‖24t,

we now have

m∑
n=1

(‖dtξn‖2 + ‖dtπn‖2
1)4t+ ‖ξm‖2

1 + ‖dtπm‖2 + ‖πm‖2
1

≤ M{4t2 + h2k
p + h2l

c +
m∑
n=1

(‖ξn‖2
1 + ‖πn‖2

1 + ‖dtπn‖2)4t}.
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Using Bellman’s inequality, it is shown that

max
1≤n≤m

‖dtπm‖2 + max
1≤n≤m

‖πm‖2
1 + max

1≤n≤m
‖ξm‖2

1

+
m∑
n=1

(‖dtπn‖2
1 + ‖dtξn‖2)4t ≤ M(4t2 + h2k

p + h2l
c ).

(3.7)

Let the parameters satisfy that

4t = o(hp), 4t = o(hc), k ≥ 2, l ≥ 2, hlc = o(hp), hkp = o(hc), (3.8)

and let 4t and h be small enough that

Mh−1
p (4t+ hkp + hlc) ≤ 1, Mh−1

c (4t+ hkp + hlc) ≤ 1.

Now, we demonstrate the induction hypotheses (3.5) is true for r = m.
By (3.7), (3.8), and inverse properties, we find that

‖dtπm‖L∞(Ω) ≤ Mh−1
p ‖dtπm‖ ≤ Mh−1

p (4t+ hkp + hlc) ≤ 1,

‖∇πm‖L∞(Ω) ≤ Mh−1
p ‖∇πm‖ ≤ Mh−1

p (4t+ hkp + hlc) ≤ 1,

‖ξm‖W 1∞(Ω) ≤ h−1
c ‖ξm‖1 ≤ Mh−1

c (4t+ hkp + hlc) ≤ 1,

so (3.5) is true for r = m.

Theorem 3.1 Suppose that the assumptions given in §1 hold and the space
and time discretizations satisfy (3.8). Then there exists a constant M such
that, for (hc, hp) sufficiently small,

max
0≤n≤T/4t

‖cn − Cnh‖2
1 + max

0≤n≤T/4t
‖pn − Pnh ‖2

1 + max
1≤n≤T/4t

‖dt(pn − Pnh )‖2

+
T/4t∑
n=1

‖dt(pn − Pnh )‖2
14t+

T/4t∑
n=1

‖dt(cn − Cnh )‖24t ≤ M(4t2 + h2l
c + h2k

p ),

where M is independent of 4t, hc, and hp.

Remark. In addition to the optimal estimates in the L∞(J ;H1(Ω))
norm, we also obtain an estimate of dt(pn − Pnh ) in the L∞(J ;L2(Ω)) norm
and in the L2(J ;H1(Ω)) norm, which cannot be found previously. This
should attribute to the special technique for establishing error equation (3.4).
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A Numerical Algorithm for Single Phase
Fluid Flow in Elastic Porous Media
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Abstract

In this paper we consider an integrated model for single-phase fluid
flow in elastic porous media. The model and mathematical formula-
tion consist of mass and momentum balance equations for both fluid
and porous media. We propose a mixed finite element scheme to solve
simultaneously for the porous media displacement, fluid mass flux, and
pore pressure. A prototype simulator for solving the integrated pro-
blem has been built based on a finite element object library that we
have developed. We will present numerical and sensitivity results for
the solution algorithm.

KEYWORDS: geomechanics, fluid flow, elastic deformation, porous media

1 Introduction

Mechanical processes in porous media involve two basic elements: fluid flow
and rock deformation. It is important to address the coupling of fluid flow
and rock deformation for stress-sensitive reservoirs in reservoir simulation.
In stress-sensitive reservoirs, the change in fluid pressure, which is caused
by fluid injection or production, perturbs the stress state of the rock. The
change in stress state triggers the rock deformation which, in turn, affects
the fluid flow processes by changing the volumetric behavior of the reser-
voir fluid and rock properties. In most conventional reservoir simulations,
one only considers the impact of rock deformation on fluid flow through the
pore compressibility which is expressed as a function of the fluid pressure.
This simplistic approach is not adequate for simulating the coupling effects
in stress-sensitive reservoirs. Moreover, reservoir simulations which are based
on this simplified model can lead to wrong predictions for reservoir perfor-
mance. Consequently, it is necessary to develop a coupled model where the
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dependence of flow and deformation on each other can be modeled simulta-
neously.

The key issue in a coupled model is how to describe the interaction bet-
ween the flow and deformation. The concept of “effective stress”, which is
defined as the total stress of rock minus the fluid pressure, was first propo-
sed by Terzaghi to take into account the effect of fluid pressure on the rock
deformation [18]. Then this concept was generalized for the coupled model
of fluid flow and rock deformation by Biot in a number of papers [1, 2, 3, 4],
into what is called “poro-elasticity theory”. The poro-elasticity theory has
been widely used in civil, mining, petroleum, and environmental engineering
for several decades. While considering the impact of the rock deformation on
the processes of fluid flow, the rock properties, such as porosity and permea-
bility, may change significantly with the variation of both fluid pressure and
the stress state [7, 16]. The constitutive relations which describe the depen-
dency of the rock properties on the deformation are derived based on various
experimental observations and physical assumptions [5, 7, 8, 9, 13, 16]. Pri-
marily, the effect on the volumetric behavior of fluid flow is widely used in
developing coupled models, in which the pore compressibility depends on not
only fluid pressure but also the mean stress of the rock [5, 20].

Generally, the mathematical models for solving the coupled problems
are derived from physical principles based on certain physical assumptions
[4, 5, 10, 11, 12, 19]. The mathematical formulations are composed of a
system of mixed-type nonlinear partial differential equations because of the
coupling terms in the equations which govern flow and deformation. Nume-
rical solution algorithms for solving such a system are difficult because the
algorithms need to address the mathematical characteristics of both flow and
deformation problems and, at the same time, to handle the coupling terms
properly. Standard finite element methods have been used to solve the cou-
pled system [10, 11, 12, 19]. However, the application of standard Galerkin
methods in solving fluid flow problems raises concerns because of the loss
of local mass conservation which is an important issue in reservoir simula-
tion. Osorio used a finite difference method to solve the same problem in a
sequential fashion, which preserved local mass conservation [14]. However,
the simultaneous solution procedure is more favorable compared with the
sequential solution procedure due to computational efficiency.

In this paper we employ the mixed finite element method to discretize
the governing equations in which the Galerkin method is used for the defor-
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mation equation and the lowest order Raviart-Thomas element is used for
the fluid flow equations to conserve mass locally [6]. The numerical problems
are solved in a fully coupled and fully implicit fashion, which requires an
efficient iterative solver. The research simulator has been built up based on
the finite element objects which have been developed in an object-oriented
fashion [17]. The simulator has solved several test problems and field-scale
simulation is ongoing. The primary numerical results show the strength of
the solution procedure. The rest of the paper is organized as follows: In §2,
we derive a mathematical formulation for fluid flow in elastic porous media
from basic physical principles. In §3, we propose numerical schemes to solve
mathematical problem. In §4, we briefly discuss our simulator development
strategy. In §5, we show numerical results for solving an axis-symmetric pro-
blem by using the simulator. In §6, we draw some conclusions and identify
the directions for future work.

2 Mathematical Model

In this paper, we make the following basic assumptions: (1) temperature of
the reservoir is constant, (2) there is no mass exchange between the rock
phase and fluid phase, and (3) the rock is elastic material. The governing
equations of coupled rock deformation and fluid flow are derived from the
following physical principles: mass conservation and momentum balance for
both fluid and rock phases. Since there is no mass exchange between the rock
and fluid, the mass is conserved in terms of phases:

∂ (φρf )
∂t

+ ∇ · (ρfφvf

)
= qf , (2.1)

and
∂ ((1 − φ)ρr)

∂t
+ ∇ · (ρr(1 − φ)vr) = 0. (2.2)

Equations (2.1) and (2.2) are the mass conservation for fluid and solid phase,
respectively. The subscripts f stands for fluid phase and r for rock phase.
In equations (2.1) and (2.2), φ stands for the porosity, ρ stands for the mass
density and qf stands for the flow rate of a source/sink term. The momentum
balance for fluid is interpreted as Darcy’s law in terms of fluid velocity relative
to the rock velocity:

v = φ
(
vf − vr

)
= − k

µf
(∇p+ ρfg∇D) , (2.3)
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where µ stands for fluid viscosity, k for the rock permeability which is a tensor
and g denotes the gravitational acceleration. The momentum balance for the
solid phase is expressed by the steady state force balance:

∇ · σ = q
u
, (2.4)

where σ stands for the stress state of the solid phase and q
u

is a body force.
According to the poroelastic theory [4, 5], the effective stress is used in

describing the stress-strain relationship:

σ′ = 2Gε+ λ∇ · u, (2.5)

where σ′ stands for the effective stress, u for the displacement, ε for the
strain, G for shear moduli and λ for the Lamé constant. The elastic strain-
displacement relationship is defined as

ε =
(∇u+ ∇uT

)
/2. (2.6)

The effective stress σ′, is defined as follows according to [3, 5]:

σ′ = σ − αpδ, (2.7)

where p is fluid pressure, α is a coefficient which is positive but less than 1 and
δ is Kronecker δ. Generally, α could be a function of the fluid pressure and
rock deformation. However, it is reasonable to assume that α is a constant for
single phase fluid flow in elastic porous media. Combining equations (2.4)–
(2.7), we obtain the governing equation for the rock deformation in terms of
rock displacement u and fluid pressure p:

∇ · [G(∇u+ ∇uT )] + ∇(λ∇ · u) + ∇(αp) = q
u
. (2.8)

In this paper, the effect of the rock deformation on the flow processes are
treated through: the dependency of the porosity on both fluid pressure and
mean stress, and Darcy’s law is valid for the fluid velocity relative to the solid
velocity. Substituting equation (2.3) into (2.1), we obtain the following form
for the fluid mass balance equation:

d (ρfφ)
dt

+ ρfφ∇ · vr + ∇ · (ρfv) = qf , (2.9)

where the total derivative is defined as d/dt = ∂∂t + vr · ∇. From equation
(2.2), we obtain the following relationship:

∇ · vr =
1
Vb

dVb

dt
, (2.10)
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where Vb stands for the bulk volume of the rock phase. Since the porosity is
defined as the ratio of pore volume Vp to the bulk volume Vb, we obtain the
following relationship:

dφ

dt
=

d

dt

(
Vp

Vb

)
= φ

(
1
Vp

dVp

dt
− 1
Vb

dVb

dt

)
. (2.11)

By substituting equations (2.10) and (2.11) into equation (2.9), we obtain

ρfφ

(
1
ρf

dρf

dt
+

1
Vp

dVp

dt

)
+ ∇ · (ρfv) = qf . (2.12)

Generally the fluid density is a function of fluid pressure and the compressi-
bility of the fluid is defined as cf = 1

ρf

dρf

dp . The change of the pore volume
Vp is caused by both fluid pressure and mean stress of the rock phase when
considering the coupling effects. Therefore, we obtain the following relati-
onship:

1
Vp

dVp

dt
=

1
Vp

(
∂Vp

∂σ

)
p

dσ

dt
+

1
Vp

(
∂Vp

∂p

)
σ

dp

dt
, (2.13)

where the mean stress σ is defined as

σ = tr(σ)/3. (2.14)

Then we define the compressibilities as follows:

cpσ = − 1
Vp

(
∂Vp

∂σ

)
p

and cpp =
1
Vp

(
∂Vp

∂p

)
σ

. (2.15)

In equation (2.15), cpσ and cpp are compressibilities of the pore volume. The
first letter in subscripts denotes the type of volume (e.g. “p” for pore vo-
lume or “b” for bulk volume) and the second letter refers to the independent
variable (e.g. “p” for fluid pressure and “σ” for the mean stress of the rock
phase). We can relate these compressibilities to the experimentally mea-
surable compressibilities: the compressibility of the solid grains cr and the
compressibility of the bulk volume with respect to mean stress cbσ [20]:

cpσ =
cbσ − cr

φ
and cpp =

cbσ − (1 + φ)cr
φ

. (2.16)

Combining equations (2.13) and (2.16) with equation (2.12), we obtain

ct
∂p

∂t
− c1

∂σ

∂t
+ ∇ · (ρfv) = qf , (2.17)
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where ct and c1 are given as follows:

ct = ρf (cbσ − (1 + φ)cr + φcf ) , (2.18)

and

c1 = ρf (cbσ − cr) . (2.19)

We can obtain a relationship between volumetric strain and mean stress from
equations (2.7) and (2.5):

σ =
∇ · u
cbσ

+ αp. (2.20)

Because we are only considering elastic (small) deformation, it is reasonable
to neglect the higher order term in the total derivative d

dt , then d
dt = ∂

∂t .
Combining equations (2.9), (2.18), (2.19), and (2.20), we obtain the governing
equation for fluid flow as follows:

f +K (∇p+ ρfg∇D) = 0,

c1
∂
∂t

(∇ · u
cbc

)
+ c1

∂(αp)
∂t

− ∇ · f − ct
∂p
∂t

= −qf ,
(2.21)

where K = ρfk/µf .

Equations (2.8) and (2.21) form the system of governing equations for
single phase fluid flow through elastic rock. The primary variables are the
displacement u, mass flux of the fluid f and fluid pressure p.

To determine the solution of equations (2.8) and (2.21), we define the
following boundary and initial conditions:

u = ud on Γrd,

G(∇u+ ∇uT )n+ λ∇ · un = un on Γrn,

p = pd on Γfd,

K(∇p+ ρfg∇D) n = f
n

on Γfn,

p = p0 in Ω0 at t = 0,
u = u0 in Ω0 at t = 0,

where Ω stands for the solution domain, ∂Ω stands for the boundary of the
solution domain. Γ1d ∪ Γ1n = Γ2d ∪ Γ2n = ∂Ω. The subscripts r and f

stand for the boundary condition in terms of the rock deformation and fluid
flow, respectively. The subscripts d and n denote the Dirichlet and Neumann
boundary conditions, respectively.
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3 Numerical Solution Algorithm

To solve the system (2.8) and (2.21) numerically by using the mixed finite
element method, we need to write the system in a weak formulation. To this
end, we shall use the following standard notation for Sobolev spaces and their
norms:

Ũ = {u ∈ H1(Ω)3 | u = ud on Γ1d}, U = {u ∈ H1(Ω)3 | u = 0 on Γ1d},
Ṽ = {f ∈ L2(Ω)3 | ∇ · f ∈ L2(Ω), f · n = f

n
on Γ2n},

V = {f ∈ L2(Ω)3 | ∇ · f ∈ L2(Ω), f · n = 0 on Γ2n},
W = L2(Ω).

Now, the weak formulation for the coupled system (2.8) and (2.21) seeks
(u, f, p) ∈ U × V × W satisfying

a(u, v) + (αp,∇ · v) − 〈αp, v · n〉Γ1n∩Γ2n
= (q

u
, v) + 〈un, v〉Γ1n

,

(K−1f, ψ) − (p,∇ · ψ) = −(ρfg∇D,ψ) − 〈pd, ψ · n〉
Γ1d

,
(
c1
∂
∂t

(∇ · u
cbc

)
, κ
)

+
(
c1
∂(αp)
∂t

, κ

)
− (∇ · f, κ) −

(
c2
∂p
∂t
, κ
)

= −(qf , κ),

(3.1)
for all (v, ψ, κ) ∈ U × V × W.

Let h ∈ (0, 1) and Th be a family of regular triangulations of Ω. Let Uh ∈
U be the piecewise continuous linear finite element spaces and (Vh,Wh) ∈
(V,W) the lowest order Raviart-Thomas mixed finite element spaces [15].
The finite element approximation (uh, fh

, ph) ∈ Uh ×Vh ×Wh is the solution
of the discretized version of (3.1): Find (uh, fh

, ph) ∈ Uh × Vh × Wh such
that for all (vh, ψh

, κh) ∈ Uh × Vh × Wh

a(uh, vh) + (αph,∇ · vh) − 〈αph, vh · n〉Γ1n∩Γ2n
= (q

u
, vh) + 〈un, vh〉Γ1n

,

(K−1f
h
, ψ

h
) − (ph,∇ · ψ

h
) = −(ρfg∇D,ψh

) −
〈
pd, ψh

· n
〉

Γ1d

,
(
c1
∂
∂t

(∇ · uh
cbc

)
, κh

)
+
(
c1
∂(αph)
∂t

, κh

)
− (∇ · f

h
, κh) −

(
c2
∂ph
∂t

, κh

)
= −(qf , κh).

(3.2)
A backward Euler scheme is employed for the time derivatives in (3.2) and
a Newton iteration is used at each time step due to the nonlinearities in the
governing equations. Here we present the simultaneous solution algorithm
for solving the system as follows:

1. At time t = 0, the increment in displacement ∆u is given as 0 and the
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fluid pressure is known from the initial conditions for the model. The
compressibilities are given as constants in this paper.

2. Update time to t = t+ ∆t.

3. Compute the porosity, fluid density and viscosity based on pressure and
temperature.

4. Apply Newton’s method for system (3.2) to generate Jacobian matrix.

5. Solve the linear system iteratively and then update the primary varia-
bles.

6. Repeat steps 3–5 until solution converges.

7. Go back to step 2 to update the porosity and the fluid properties and
repeat the above process until time t = T .

4 Simulator Development

In the development of numerical simulation technologies, a flexible numerical
tool is necessary to quickly test proposed numerical methods and algorithms
for solving mathematical problems describing different physical problems.
Therefore, the tool should be flexible in the choice of problems and finite
element methods and its software components should be reusable. Moreover,
the tool should also be simple to interface with other software packages.
Based on the above considerations, we divided the simulator development into
two steps: (1) develop object-oriented finite element objects (FEO) which can
be utilized to solve various model problems by using different finite element
schemes, and (2) build a simulator for solving specific physical problem, such
as the coupled problem, by using these finite element objects.

In developing FEO, we focused on the implementation of the finite ele-
ment formulation and interfaces to the mesh generator and linear solver, in
addition to the geometry and partial differential equations [17]. There are
two basic components in implementing the finite element method: (1) varia-
tional formulations which consist of a set of linear and bilinear forms; and
(2) shape functions which generate the approximate solution. Consequently,
we identified the objects as the bilinear forms, linear forms, piecewise poly-
nomial spaces, boundary integral forms and essential boundary conditions.
Object-oriented programming techniques, especially polymorphism, are used
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to uniformly process these different objects. A user interface specifies these
objects and combines them to form a finite element problem.

Based on FEO, we need three steps to construct the simulator for solving
the coupled problem. First, we need to develop a class which implements the
constitutive relationships for updating the fluid and rock properties. Then
we form a finite element problem for the coupled problem by using FEO.
Finally, we need to develop a driver which implements the Newton iteration.

5 Computational Examples

A simulator for solving the coupled fluid flow and rock deformation problems
has been developed. The simulator has been tested with various problems
in order to debug and to improve the overall efficiency. In this paper, we
show the numerical results for solving an axis-symmetric problem with known
analytical solution. It is of practical importance to solve the axis-symmetric
problem because the axis-symmetric problem is of great interest to study the
single well injection or production case where the coupling effect can have a
large impact on reservoir performance. Moreover, it is numerically efficient to
use a 2-dimensional simulator to simulate 3-dimensional reservoir behavior.
In the following test problem, we check the transformation which transforms
the 3-dimensional problem into an axis-symmetric problem and to check the
convergence rate of the proposed numerical algorithm.

By assuming that all coefficients and the solution are axis-symmetric,
i.e., ∂

∂θ = 0 and uθ = 0, we can reformulate the system (2.8) and (2.21) in
cylindrical coordinates. First, we have the following transformation formulas:

∇ · u = 1
r

(
∂(rur)
∂r

+ ∂(ruz)
∂z

)
= 1
r∇rz · (ru) if uθ = 0,

∇ψ = ∂ψ
∂r
er + ∂ψ

∂z
ez = ∇rzψ if ∂ψ

∂θ
= 0,

where er = (cos θ, sin θ, 0), ez = (0, 0, 1). Thus we obtain

∇ · [G(∇u+ ∇uT )] = 1
r

[
∂
∂r

(2rG∂ur
∂r

) + ∂
∂z

(rG∂ur
∂z

+ rG∂uz
∂r

) − 2
rGur

]
er

+1
r

[
∂
∂r

(rG∂ur
∂z

+ rG∂uz
∂r

) + ∂
∂z

(2rG∂uz
∂z

)
]
ez

= 1
r∇rz · (rG(∇rzu+ ∇rzu

T )
)− 2

r2
Gurer,

∇(λ∇ · u) = ∂
∂r

[
λ
r

(
∂(rur)
∂r

+ ∂(ruz)
∂z

)]
er

+ ∂
∂z

[
λ
r

(
∂(rur)
∂r

+ ∂(ruz)
∂z

)]
ez = ∇rz

(
λ
r∇rz · (ru)

)
.
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Multiplying system (2.8) and (2.21) by r, we have

−∇rz · (rG(∇rzu+ ∇rzu
T )
)

+ 2
rGe1u,

−r∇rz

(
λ
r∇rz · (ru)

)
− r∇rz(αp) = rq

u
,

rf + rK (∇rzp+ ρfg∇rzD) = 0,

c1r
∂
∂t

(∇rz · (ru)
cbc

)
+ c1r

∂(αp)
∂t

− ∇rz · (rf) − c2r
∂p
∂t

= −rqf .

(5.1)

Since the axis-symmetric problem defined in 2-dimensional rz coordinates
is the transformation of the 3-dimensional problem in xyz Cartesian coordi-
nates, there is no boundary conditions specified on r = 0.

We specify the solutions for u, f , and p as follows:

u = te−t
(
x(x2 + y2)ez, y(x2 + y2)ez, (x2 + y2)2z2

)T
,

p = (x2 + y2)2ez sin t,

f = − (4x(x2 + y2), 4y(x2 + y2), (x2 + y2)2
)T
ez sin t.

(5.2)

Assuming all coefficients of system (2.8) and (2.21) are constants, (u, f, p) is
the solution of the system with the following right-hand sides:

q
u

= −G




16xez + x(x2 + y2)(ez + 8z)
16yez + y(x2 + y2)(ez + 8z)

4(x2 + y2)ez + 16(x2 + y2)z2 + 4(x2 + y2)2


 te−t

−λ




8xez + 8x(x2 + y2)z
8yez + 8y(x2 + y2)z

4(x2 + y2)ez + 2(x2 + y2)2


 te−t − α




4x(x2 + y2)
4y(x2 + y2)
(x2 + y2)2


 ez sin t,

−qf= c1
cbc

[
4(x2 + y2)ez + 2(x2 + y2)2z

]
(1 − t)e−t

+(c1α− c2)(x2 + y2)2ez cos t+
[
16 + (x2 + y2)

]
(x2 + y2)ez sin t.

The initial conditions for this analytical solution are:

u0 = 0 and p0 = 0.

The analytical solution (5.2) is transformed to the axis-symmetric case:

u =
(
ur

uz

)
=
(
r3ezte−t

r4z2tet

)
, (5.3)

and

p = r4ez sin t and f =
(
fr

fz

)
=
( −4r3ez sin t

−r4ez sin t

)
. (5.4)
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Substituting (5.3) and (5.4) into (5.1), we obtain the following right-hand
sides q

u
and qf :

q
u

= −G
(

16rez + r3(ez + 8z)
4r2ez + 16r2z2 + 4r4

)
te−t

−λ
(

8rez + 8r3z
4r2ez + 2r4

)
tet − α

(
4r3

r4

)
ez sin t,

−qf= c1
cbc

[
4r2ez + 2r4z

]
(1 − t)e−t + (c1α− c2)r4ez cos t

+
[
16 + r2

]
r2ez sin t.

The resulting stress boundary condition is of Neumann type:

[
rG(∇rzu+ ∇rzu

T ) + λ∇rz · (ru)
] · n =

Gte−t

(
6r3ez r4ez + 4r4z2

r4ez + 4r4z2 4r5z

)
· n+ λ(4r3ez + 2r5z)te−tn.

We have solved problem (5.1) by using the simultaneous solution algo-
rithm with both triangular and quadrilateral elements. The L2 average trun-
cation error is calculated with respect to the analytical solution (5.3) and
(5.4). We carried out four runs by refining the mesh size by a factor of 2
and refining the time step size by a factor of 4. Table 1 lists the L2 average
truncation errors for each primary variable in four runs using quadrilate-
ral elements. It is clear that the proposed numerical algorithm is 2nd-order
accurate.

6 Summary and Future Work

A mixed finite element method has been employed to solve single phase fluid
flow through elastic porous media. A simultaneous solution algorithm has
been implemented using FEO to solve this coupled problem in a fully coupled
and fully implicit fashion. The simulator has been tested with various test
problems and the numerical results presented in this paper show the overall
numerical accuracy by the proposed algorithm is second order. The iterative
solution procedure which can handle the resulting linear system from the
coupled problem needs to be further studied and developed in order to carry
out field-scale reservoir simulations.
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ur uz p f · n
2 × 2 0.098 0.155 2.556 0.218
4 × 4 0.023 0.036 0.667 0.059
16 × 16 0.005 0.008 0.126 0.015
32 × 32 0.001 0.002 0.038 0.004

Table 1. Average truncation error.

References

[1] Biot, M. A., Nonlinear and semilinear rheology of porous solids’, J. Ge-
ophy. Res. 73 (1973), 4924–4937.

[2] Biot, M. A. and Willis, D. G., The elastic coefficients of the theory of
consolidation, J. Appl. Mech. 24 (1957), 594–601.

[3] Biot, M. A., General theory of three-dimensional consolidation, J. Appl.
Mech. 25 (1956), 91–96.

[4] Biot, M. A., General theory of three-dimensional consolidation, J. Appl.
Phys. 12 (1941), 155–164.

[5] Chen, H. Y., Teufel, L. W., and Lee, R. L., Coupled fluid flow and
geomechanics in Reservoir Study - I. Theory and governing equations,
presented in The Proceding of SPE Annual Technical Conference & Ex-
hibition, Dallas, Oct. 1995, 22–25.

[6] Ewing, R. E., Problems Arising in the Modeling of Processes for Hy-
drocarbon Recovery, (Ewing, ed.) The Mathematics of Reservoir Simu-
lation, 1983, SIAM, Philadelphia, PA, pp. 3-34.

[7] Fatt, I. and Davis, D. H., Reduction in permeability with overburden
pressure, Trans AIME 195 (1952), 329-341.

[8] Holt, R. M., Permeability reduction induced by a nonhydrostatic stress
field, SPEFE Dec. (1990), 444–448.

[9] Jones, F. O. and Owens, W. W., A laboratory study of low-permeability
gas sands, JPT Sept. (1980), 1631–1640.

[10] Koutsabeloulis, N. C., Numerical modeling of soft reservoir behavior du-
ring fluid production, Geotechnical Engineering in Hard Soil-Soft Rocks,
1993.

[11] Koutsabeloulis, N. C., Heffer, K. J., and Wong, S., Numerical geome-
chanics in reservoir engineering, Computer Methods and Advances in
Geomechanics, 1994.



92 Chen, Ewing, Lyons, Qin, Sun, and Yale

[12] Lewis, R. W. and Sukirman, Y., Finite element modeling of three-phase
flow in deforming saturated oil reservoirs, Int. J. Num. & Analy. Methods
Gemech. 17 (1993), 577–598.

[13] Morita, N., et al., Rock-property changes during reservoir compaction,
SPEFE Sept. (1992), 197–205.

[14] Osorio, J. G., Numerical modeling of coupled fluid-flow/geomechanical
behavior of reservoirs with stress-sensitive permeability, Ph.D disserta-
tion, New Mexico Institute of Mining and Technology, Socorro, NM,
1998.

[15] Raviart, P. A. and Thomas, J. M., A Mixed Finite Element Method
for 2nd Order Elliptic Problems, Lecture Notes in Math. 606, Springer-
Verlag, Berlin, 1977.

[16] Rhett, D. W. and Teufel, L. W., Effect of reservoir stress path on com-
pressibility and permeability of sandstones, paper SPE 24756 presented
at the SPE Annual Technical Conference and Exhibition Washington,
DC, Oct. 4-7, 1990.

[17] Sun, T., Ewing, R. E., Chen, H., Lyons, S. L. and Qin, G., Object-
oriented programming for general mixed finite element methods, Object
Oriented Methods for Interoperable Scientific And Engineering Compu-
ting; The Proceeding of the 1998 SIAM Workshop, 1998.

[18] Terzaghi, K., Die berechnung der durchlassigkeitsziffer des tones
aus dem verlauf der hydrodynamischen spannungsercheinungen, Aka-
demi der Wissenschaften in Wien, Sitzungsherichte, Mathematisch-
naturwissenschaftliche Klasse Part IIa, 1923.

[19] Zienkiewicz, O. C., Basic formulation of static and dynamic behavior
of soil and other porous media, Numerical Methods in Geomechanics,
1982.

[20] Zimmerman, R. W., Somerton, W.H. and King, M.S., Compresibility of
porous rocks, Journal of Geophysical Research 91 (1986), 12765–12777.



On the Discretization of Interface Problems
with Perfect and Imperfect Contact

Tatiana Chernogorova Richard E. Ewing
Oleg Iliev Raytcho Lazarov

Abstract
A second-order difference scheme for a first-order elliptic system

with discontinuous coefficients is derived and studied. This approxi-
mation can be viewed as an improvement of the well-known scheme
with harmonic averaging of the coefficients for a second order elliptic
equation, which is first-order accurate for the gradient of the solution.
The numerical experiments confirm the second order convergence for
the scaled gradient, and demonstrate the advantages of the new discre-
tization, compared with the older ones.

KEYWORDS: interface problems, second order discretization

1 Introduction

The single-phase fluid flow in a fully-saturated inhomogeneous porous media
that occupies a bounded domain Ω ⊂ Rn, n = 1, 2, 3 is often modeled by
first-order system

∇ · u = f(x), u = −K∇p for x ∈ Ω, (1.1)

subject to various boundary conditions. Here u is the Darcy velocity, p is
the pressure, and K(x) is the permeability tensor. The first equation is
the continuity equation, while the second one expresses the relation between
the pressure gradient and the velocity by the linear Darcy law. We assume
that K(x) is a diagonal matrix with positive elements which may have jump
discontinuities across given surfaces Γ called interfaces. In this paper we
consider two types of conditions on the interface Γ: (a) a perfect contact:

[p] = 0, [u · n] = 0 for ξ ∈ Γ; (1.2)

and (b) imperfect contact:

(u · n)+ = (u · n)− = αξ(p+ − p−) for ξ ∈ Γ. (1.3)

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 93–103, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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Here n is the normal to the interface Γ unit vector (with fixed direction),
g±(ξ) denotes the right and left limits of the function g at point ξ, and
[g] = g+ − g−.

Often the velocity is eliminated so that the system (1.1) is reduced to
a second-order elliptic equation for the pressure. A modified finite volume
discretization for such a class of elliptic problems has been introduced and
studied in [2, 3] and numerical experiments, confirming second-order con-
vergence for the pressure, have been presented. In the present paper we
continue the research in [2, 3] by introducing a new approximation of the
velocity and studying its properties. We also study the relative accuracy for
the approximate pressure near the interface, and discuss its superconvergent
behavior in a particular case. We restrict our consideration to a class of inter-
face problems for which: (1) each interface is parallel to a co-ordinate axes,
and (2) the velocity is continuously differentiable in the normal direction to
the interfaces. Under these two assumptions, we construct a second-order
approximation of the system (1.1) on a staggered grid so that the pressure
values are computed at the centers of the control volumes, while the values
of the normal component of the velocity are computed at faces of the cells.
The numerical experiments show that the derived scheme has second order
convergence for both, the pressure and the velocity, and is superior to the
schemes with harmonic averaging, which exhibit second-order convergence
for the pressure and first order convergence for the velocity. The computati-
ons also show that for a smooth velocity the proposed discretization gives a
considerably more accurate pressure, compared to the results of the scheme
with harmonic averaging of the coefficients.

2 Discretization of the Interface Problem

Here we present in detail the discretization of the one-dimensional (1-D) pro-
blems with perfect and imperfect contacts. The discretization of the multi-
dimensional problem on a tensor-product grid is just a tensor product of 1-D
discretizations.

2.1 Discretization of the Perfect Contact Problem

In order to illustrate our approach, we first consider the perfect contact
problem (1.1) - (1.2) in the one-dimensional case. We introduce a stan-
dard uniform cell–centered grid, x0 = 0, x1 = h/2, xi = xi−1 + h, i =



On the Discretization of Interface Problems 95

2, . . . , N, xN+1 = 1, where h = 1/N . The internal grid points can be con-
sidered as centered around the control volumes Vi = (xi− 1

2
, xi+ 1

2
) where

xi+ 1
2

= xi + 1
2h, xi− 1

2
= xi − 1

2h. The values of the pressure and of the
right hand side are defined at the grid points xi and are denoted by pi, fi.
The values of the velocity are defined at the points xi+ 1

2
and are denoted by

ui+ 1
2
. Non-uniform grids can be treated in a similar way. Note, our approach

is defined locally, at a particular control volume level, and it can work with
standard vertex-based grids as well.

The second-order discretization of the continuity equation in (1.1) is
straightforward:

ui+ 1
2

− ui− 1
2

= h ϕi, ϕi =
1
h

∫ x
i+ 1

2

x
i− 1

2

f(x)dx, i = 1, 2, ..., N. (2.1)

Next, consider the Darcy law, rewritten in the form

−∂p

∂x
=
u(x)
k(x)

,

and integrate this expression over the interval (xi, xi+1):

− (pi+1 − pi) = −
∫ xi+1

xi

∂p

∂x
dx =

∫ xi+1

xi

u(x)
k(x)

dx. (2.2)

We assume that the velocity u(x) is two-times continuously differentiable on
the interface, so it can be expanded around the point xi+ 1

2
in Taylor series:

u(x) = ui+ 1
2

+ (x− xi+ 1
2
)
∂ui+ 1

2

∂x
+

(x− xi+ 1
2
)2

2
∂2u(η)
∂x2 , η ∈ (xi, xi+1). (2.3)

After replacing the first derivative of the velocity at xi+ 1
2

by a two-point
backward difference, we get the following approximation of (2.2):

−(pi+1−pi) = ui+ 1
2

∫ xi+1

xi

dx

k(x)
+
ui+ 1

2
− ui− 1

2

h

∫ xi+1

xi

(x− xi+ 1
2
)

k(x)
dx + O(h3).

(2.4)
Finally, we rewrite this equation in the following basic form:

− kH
i+ 1

2

pi+1 − pi

h
= ui+ 1

2
+ ai+ 1

2
(ui+ 1

2
− ui− 1

2
) + ψi, (2.5)

where ψi = O(h2) and

kH
i+ 1

2
=
(

1
h

∫ xi+1

xi

dx

k(x)

)−1

, ai+ 1
2

= kH
i+ 1

2

1
h2

∫ xi+1

xi

x− xi+ 1
2

k(x)
dx. (2.6)
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Here kH
i+ 1

2
is the well-known harmonic averaging of the coefficient k(x) over

the cell (xi, xi+1), which has played a fundamental role in deriving accurate
schemes for discontinuous coefficients (see, e.g. [4, 5, 6, 7]). This presentation
of the velocity u(x) is a starting point for our discretization. Since we have
assumed that the velocity is smooth, then the consecutive terms in the right-
hand side in (2.5) are O(1), O(h) and O(h2), respectively. Truncation of this
sum after the first term produces the well-known scheme of Samarskii [5] with
harmonic averaging of the coefficient. This scheme is O(h)-consistent for the
velocity at the interface points and second-order accurate for the pressure
in the discrete H1-norm. Further in the text, we call this scheme harmonic
averaging or HA scheme.

Now we derive an O(h2) consistent scheme for the velocity by disregarding
only the ψi-term in (2.5). We denote by Pi the approximate pressure at the
grid points in order to distinguish it from the exact values pi. Similarly,
the approximate velocity is denoted by U−

i+ 1
2
, U+

i− 1
2

etc., where the sign ±
indicates the right and left values of the flux at the point. Note, that the
exact fluxes are continuous, while the approximate fluxes may have different
U±

i+ 1
2

values. Thus, we get

− kH
i+ 1

2

Pi+1 − Pi

h
= U−

i+ 1
2

+ ai+ 1
2
(U−

i+ 1
2

− U+
i− 1

2
), (2.7)

− kH
i− 1

2

Pi − Pi−1

h
= U+

i− 1
2

+ ai− 1
2
(U−

i+ 1
2

− U+
i− 1

2
). (2.8)

In summary, the equations (2.1),(2.7), and (2.8) approximates the first-order
system (1.1) with local truncation error O(h2). Further, we refer to this
approximation as a scheme with improved harmonic averaging or IHA scheme.

Now we transform the discretization to a more suitable form. Subtracting
(2.8) from (2.7) we get

(1 + ai+ 1
2

− ai− 1
2
)(U−

i+ 1
2

− U+
i− 1

2
) = −kH

i+ 1
2

Pi+1 − Pi

h
+ kH

i− 1
2

Pi − Pi−1

h
. (2.9)

Combining this with the discretization of the continuity equation (2.1), we
obtain

−
(
1 + ai+ 1

2
− ai− 1

2

)−1 1
h

(
kH

i+ 1
2

Pi+1 − Pi

h
− kH

i− 1
2

Pi − Pi−1

h

)
= ϕi. (2.10)
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On the other hand, solving the system (2.7), (2.8) for U−
i+ 1

2
and U+

i− 1
2
, we get

U−
i+ 1

2
=

−kH
i+ 1

2

Pi+1 − Pi

h

(
1 − ai− 1

2

)
− kH

i− 1
2

Pi − Pi−1

h
ai+ 1

2

1 + ai+ 1
2

− ai− 1
2

,

U+
i− 1

2
=
kH

i+ 1
2

Pi+1 − Pi

h
ai− 1

2
− kH

i− 1
2

Pi − Pi−1

h

(
1 + ai+ 1

2

)
1 + ai+ 1

2
− ai− 1

2

.

(2.11)

The new scheme approximates the velocity with second-order accuracy,
independently of the positions of the discontinuity of the coefficient k(x).
The price we paid is the necessity to evaluate the expressions kH

i+ 1
2
, kH

i− 1
2

and ai+ 1
2
, ai− 1

2
with an error no larger than O(h2). Let a point ξ where

the coefficient k(x) is discontinuous be in the form ξ = xi + θh for some i
and 0 ≤ θ ≤ 1. Now we consider particular realizations of this scheme. The
approximation of the integral in kH

i+ 1
2

is done by splitting it into integrals over
(xi, ξ) and (ξ, xi+1) and then applying the trapezoidal rule for each integral.
This approach will produce an accurate enough evaluation of kH

i+ 1
2
:

kH
i+ 1

2
≈
[
θ

2

(
1
ki

+
1

kξ−0

)
+

1 − θ

2

(
1

ki+1
+

1
kξ+0

)]−1

. (2.12)

Note, that kξ−0 and kξ+0 are known from the interface condition.
Further, we continue with the second integral in (2.6). We again split the

integral into two integrals and apply the trapezoidal rule for each of the two
integrals:

1
h2

∫ xi+1

xi

(x− xi+1)
k(x)

dx =
1
h2

∫ ξ

xi

(x− xi+ 1
2
)

k(x)
dx +

1
h2

∫ xi+1

ξ

(x− xi+ 1
2
)

k(x)
dx

=
θ

2

(
θ − 0.5
kξ−0

− 0.5
ki

)
+

1 − θ

2

(
0.5
ki+1

+
θ − 0.5
kξ+0

)
+ O(h2).

(2.13)
In the case of a piece-wise constant coefficient k(x) these formulas are exact
and reduce to

kH
i+ 1

2
=
(
θ

ki
+

1 − θ

ki+1

)−1

and ai+ 1
2

=
1
2
θ(1 − θ)(ki − ki+1)
(1 − θ)ki + θki+1

. (2.14)

Obviously, if the point of discontinuity ξ is a midpoint of the grid, i.e. ξ =
xi+ 1

2
, then θ = 1/2 so that (2.14) reduces to

kH
i+ 1

2
= 2

(
1
ki

+
1

ki+1

)−1

and ai+ 1
2

=
1
4

(
ki − ki+1

ki + ki+1

)
.
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Remark 2.1 Note that if f(x) ≡ 1 then u′′(x) = 0 and the local truncation
error is zero. Thus, HA scheme reproduces exactly piecewise linear solutions,
while the IHA scheme reproduces exactly piecewise quadratic solutions.

2.2 Discretization of the Imperfect Contact Problem

Discretization of imperfect contact problem in the case when interfaces are
aligned with grid nodes, is studied in [6]. A harmonic averaging type of
discretization for interfaces aligned with control volume faces has been di-
scussed in [1]. Below we derive improved discretization for the case when
interfaces are orthogonal to a co-ordinate axis. Consider the 1-D imperfect
contact problem (1.1), (1.3). The discretization in this case is derived in a
similar way as in the case of perfect contact, so we shall only list the final
results. The second-order discretization of the continuity equation in (1.1) is
almost the same as in the perfect contact case:

U−
i+ 1

2
− U+

i− 1
2

= h ϕi, ϕi =
1
h

∫ x
i+ 1

2

x
i− 1

2

f(x)dx, i = 1, 2, ..., N. (2.15)

A second order consistent discretization to Darcy law is given by:

− βi+ 1
2

Pi+1 − Pi

h
= U−

i+ 1
2

+ bi+ 1
2
(U−

i+ 1
2

− U+
i− 1

2
). (2.16)

For piecewise constant coefficients we have

bi+ 1
2

= (θ − 0.5) +
hαξ

2Aξ

(
(1 − θ)2ki − θ2ki+1

)
,

where

Aξ = ki(1 − θ)hαξ + ki+1(ki + θhαξ), kH
i+ 1

2
=
[
1 − θ

ki+1
+
θ

ki

]−1

,

βi+ 1
2

= kH
i+ 1

2

(
kH

i+ 1
2

hαi+ 1
2

+ 1

)−1

.

Note, in this particular case, we have second order of approximation for the
velocity near the interface when θ 6= 0.5, and third order of approximation
for the velocity on the interface when θ = 0.5.

3 Numerical Experiments

Numerical experiments were performed in order to study the behavior of the
proposed discretization (IHA) and to compare it with the widely used discre-
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tization with harmonic averaging of the coefficients (HA). We approximately
solve model problems with known analytical solution in order to assess the ac-
curacy of the numerical solution. Three test problems have been considered.
First, we solve a 2-D perfect contact problem with different permeabilities in
4 subregions, and investigate the cases when the interfaces are aligned with
the control volume faces (i.e. θ = 0.5), and when the grid is not aligned
with the interfaces (i.e. θ 6= 0.5). We show that IHA ensures second order
convergence for the velocity in both cases, while HA is first-order accurate for
the velocity in both cases. Both schemes are second-order accurate for the
pressure, however the constant of convergence in IHA is much smaller. In the
second test we solve a 2-D perfect contact problem with different permeabi-
lities in 16 subregions. Superconvergence for the pressure (namely, accuracy
of O(h3)) is observed for this particular problem in the case of a constant
permeability in the whole domain Ω. This is due to some symmetry and some
cancellation of reminder terms. Numerical experiments show that for smooth
velocity the IHA scheme preserves this superconvergence for the pressure in
the case of discontinuous piecewise constant coefficients, while HA does not
preserve it. Again, IHA ensures second-order accuracy for the velocity, while
HA is only first-order accurate for the velocity. In the third example we solve
a imperfect contact problem.

We should note that these computations do not guarantee high order of
convergence for solutions with low regularity, for example, those produced
by discontinuous coefficients and f(x) ≡ 1. Such solutions belong to the
Sobolev space H1+γ(Ω), where γ > 0 depends on the ratios of the jumps at
the intersection points of the interfaces and can be very small.

Example 1. 2-D perfect contact problem in a unit square with interfaces
at x = ξ, y = η (4 subregions). The permeability is a piecewise constant in
each sub-domain and takes values k = {10−2, 1, 10−4, 10+6} in the 4 subregi-
ons, counting from left to right and from bottom to top. The exact solution
in this case is: pex = 1

ksin
(

πx
2

)
(x− ξ) (y − η)

(
1 + x2 + y2

)
. Results from

computations are presented in Table 1 and Table 2. The following notations
are used: HA and IHA denote harmonic averaging based discretization and
improved HA discretization for the case of aligned interfaces (i.e. θ = 0.5),
respectively. The notation ”θ−” in front of the scheme’s notation is used
when θ 6= 0.5. Maximum errors for the pressure and their ratios are presen-
ted in Table 1. It is seen that both schemes converge with second order in
both cases: aligned and non-aligned interfaces. The non-monotonic behavior
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of the convergence in the non-aligned case can be explained by the fact that θ
varies from grid to grid, taking values larger or smaller than 0.5. In this way,
the maximum value of the solution in different subregions is involved in the
error estimate. Table 2 summarizes maximum errors for the velocity at the
vertical interface (or at the nearest vertical line x = xi+ 1

2
in the non-aligned

case). It is clearly seen that IHA is second-order accurate for the velocity,
while HA is only first-order accurate for it. Again non-monotone behavior of
the convergence, related to alternating values for θ on the consecutive grids, is
observed. A monotone convergence will be observed for fixed θ, for example,
on grids contains 12 × 12, 42 × 42, 162 × 162 nodes.

Example 1.2-D perfect contact problem with 4 subregions.

ξ = 1
2 , η = 1

2 , (aligned) ξ = 1
3 , η = 1

3 , (non-aligned)
Grid HA scheme IHA scheme θ-HA scheme θ-IHA scheme
12x12 1.75d-2 - 3.34d-4 - 1.91d-2 - 4.48d-4 -
22x22 5.97d-3 2.9 7.64d-5 4.4 9.56d-3 2.0 1.45d-4 3.1
42x42 1.80d-3 3.3 1.94d-5 3.9 2.10d-3 4.6 4.02d-5 3.6
82x82 5.03d-4 3.6 4.97d-6 3.9 7.03d-4 3.0 1.10d-5 3.7

162x162 1.36d-4 3.7 1.26d-6 3.9 1.64d-4 4.3 2.80d-6 3.9
322x322 3.56d-5 3.8 3.17d-7 4.0 4.69d-5 3.5 7.19d-7 3.9

Table 1. Maximum errors for pressure and their ratios.

Example 1.2-D perfect contact problem with 4 subregions.

ξ = 1
2 , η = 1

2 , (aligned) ξ = 1
3 , η = 1

3 , (non-aligned)
Grid HA scheme IHA scheme θ-HA scheme θ-IHA scheme
12x12 4.20d-2 - 1.18d-3 - 2.19d-2 - 5.26d-4 -
22x22 2.14d-2 1.96 2.73d-4 4.3 2.83d-2 0.77 1.27d-4 4.1
42x42 1.08d-2 1.98 8.07d-5 3.4 5.62d-3 5.03 5.30d-5 2.4
82x82 5.40d-3 2.00 2.20d-5 3.7 7.11d-3 0.79 5.44d-6 9.7

162x162 2.70d-3 2.00 5.77d-6 3.8 1.41d-3 5.04 3.93d-6 1.4
322x322 1.35d-3 2.00 1.50d-6 3.8 1.78d-3 0.79 3.77d-7 10.

Table 2. Maximum errors for velocity and their ratios.

Example 2. 2-D perfect contact problem in a unit square with inter-
faces at x = ξ1 = 0.2, x = ξ2 = 0.5, x = ξ3 = 0.7 and y = η1 =
0.3, y = η2 = 0.6, y = η3 = 0.8 (16 subregions). The permeability is
a piecewise constant function and in each sub-domain and takes values k =
10×{10, 10−3, 1, 10−4, 10−2, 10, 10−3, 1, 10, 10−3, 1, 10−3, 10−3, 10, 10−2, 1} in
the 16 subregions, counting from left to right and from bottom to top with
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exact solution p(x, y) = 1
k (x− ξ1) (x− ξ2) (x− ξ3) (y − η1) (y − η2) (y − η3).

The computational results are presented in Tables 3 and 4. For comparison
we have included also the results for the constant coefficient k(x, y) = 1 in
the whole domain Ω. Notation “case B” is used to denote columns with these
results. One can observe superconvergence for the pressure in the continuous
case, which is also exhibited by IHA in the case of discontinuous coefficients.
Table 4 shows that IHA ensures second-order convergence for the velocity,
while HA is only first-order accurate. In our numerical experiments the exact
solution is zero at the interfaces, so the absolute values for the error there
might be small, compared to absolute errors far from interfaces, while the
relative errors can be very large. We can plot the relative error p(xi,yj)−Pi,j

p(xi,yj)

computed by HA and IHA, respectively. Here (xi, yj) are the centers of
the cells in the rectangular grid. Qualitatively, the results look similar, but
quantitatively they differ by orders of magnitude. The results show that IHA
produces a considerably more accurate solution near the interface.

Example 3. 1-D imperfect contact problem with interfaces at ξ1 = 0.2
and ξ2 = 0.7 with an exact solution:

p(x) = − d

k(s+ 1)(s+ 2)
xs+2 − c

2k
x2 + ax+ b.

The parameters k, c, d vary for the different subregions. The constants in the
imperfect contact interface conditions are α1 = 102, α2 = 10. Also, u(0) = 1,
u(1) = 0, and s = {1, 1, 1} , k =

{
1, 10, 102

}
, c =

{
10, 1, 102

}
, in the three

subregions, counting from the left.

Example 2. 2-D perfect contact problem with 16 subregions.

k(x, y) ≡ 1 aligned
Grid case B HA scheme IHA scheme
12x12 1.75d-3 - 3.91d-3 - 1.65d-3 -
22x22 2.89d-4 6.06 1.49d-3 2.62 2.87d-4 5.75
42x42 4.18d-5 6.91 5.07d-4 2.93 4.17d-5 6.88
82x82 5.64d-6 7.41 1.55d-4 3.27 5.63d-6 7.41

162x162 7.33d-7 7.69 4.39d-5 3.53 7.32d-7 7.69
322x322 9.34d-8 7.85 1.19d-5 3.69 9.35d-8 7.83

Table 3. Maximum errors for pressure and their ratios.

Example 2. 2-D perfect contact problem with 16 subregions.
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k(x, y) ≡ 1 aligned
Grid case B HA scheme IHA scheme
12x12 1.74d-4 - 2.02d-3 - 9.37d-4 -
22x22 5.85d-5 2.97 1.17d-3 1.73 2.91d-4 3.21
42x42 1.67d-5 3.50 6.20d-4 1.89 8.22d-5 3.54
82x82 4.42d-6 3.77 3.18d-4 1.95 2.39d-5 3.44

162x162 1.14d-6 3.88 1.60d-4 1.99 6.56d-6 3.62
322x322 2.89d-7 3.94 8.06d-5 1.99 1.75d-6 3.75

Table 4. Maximum errors for velocity and their ratios.

Example 3. 1-D imperfect contact problem with 3 subregions.

pressure velocity
Grid HA scheme IHA scheme HA scheme IHA scheme
12x12 4.56d-3 - 2.47d-3 - 3.87d-2 - 2.49d-2 -
22x22 1.33d-3 3.4 5.12d-4 4.8 9.70d-3 4.0 5.46d-3 4.6
42x42 3.58d-4 3.7 9.77d-5 5.2 2.43d-3 4.0 1.11d-3 4.9
82x82 9.24d-5 3.9 1.83d-5 5.3 6.07d-4 4.0 2.50d-4 5.4

162x162 2.35d-5 3.9 3.27d-6 5.6 1.52d-4 4.0 3.55d-5 5.8
322x322 5.92d-6 4.0 5.84d-7 5.6 3.80d-5 4.0 6.04d-6 5.9

Table 5. Maximum errors and their ratios.

The results from computations are presented in Table 5. As it was men-
tioned in Section 2.2 the IHA scheme approximates velocity at the interface
with third-order accuracy in the case when the imperfect contact interface is
aligned with cell faces. In this case, the HA scheme approximates the velocity
at the interface to second order. This may explain the second-order conver-
gence for the HA scheme, and the superconvergence for the IHA scheme.
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Finite Element Analysis for Pseudo
Hyperbolic Integral-Differential Equations

Xia Cui

Abstract
The finite element method and its analysis for pseudo-hyperbolic

integral-differential equations with nonlinear boundary conditions is
considered. A new projection is introduced to obtain optimal L2 con-
vergence estimates. The present techniques can be applied to treat
elastic wave problems with absorbing boundary conditions in porous
media.

KEYWORDS: pseudo-hyperbolic integral-differential equation, finite element,
Sobolev-Volterra projection, convergence analysis

1 Introduction

We consider the finite element method for the pseudo-hyperbolic integral-
differential equation subject to the initial and nonlinear boundary conditions

q(u)utt = ∇ · (a(u)∇ut + b(u)∇u
+

∫ t

0 c(u(τ))∇u(τ)dτ) + f(u), x ∈ Ω, t ∈ J,

a(u)∂ut

∂γ + b(u)∂u
∂γ +

∫ t

0 c(u(τ))
∂u(τ)

∂γ dτ = g(u), x ∈ ∂Ω, t ∈ J,

u(x, 0) = Φ(x), ut = Ψ(x), x ∈ Ω,

(1.1)

where J = [0, T ], Ω ⊂ Rd (d ≥ 1 is the dimension of the space) is an open
bounded domain with smooth boundary ∂Ω, γ denotes the outer-normal
direction to ∂Ω, φ(u) = φ(x, t, u), c(u(τ)) = c(t, τ, u(τ)) = c(t, τ, x, u(x, τ)),
and q, a, b, c, f , g, Φ, and Ψ are known functions. We also assume that the
functions q, a, b, c, f , and g are smooth with bounded derivatives and there
exist constants q∗ > 0 and a∗ > 0 such that q(x, t, ψ) ≥ q∗ and a(x, t, ψ) ≥ a∗,
∀x ∈ Ω, t ∈ J , ψ ∈ R.

Pseudo-hyperbolic integral-differential equations are often used in the
fields of visco-elasticity, nuclear physics, and biological mechanics. For exi-
stence, uniqueness, and continuous dependence of solutions, there are some

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 104–115, 2000.
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investigations carried out in [1, 5]; however, for their numerical approxima-
tion, there is few works available [4]. Since the antihunt, diffusion, and me-
mory (Volterra) term emerge at the same time in their formulation, together
with nonlinear boundary conditions, the traditional Ritz projection [6], Ritz-
Volterra projection [2], and Sobolev projection [3] can no longer reflect this
global property, so it is difficult to do an error analysis. In this paper we
introduce a new projection to treat these difficulties, use integration by parts
and an induction hypothesis reasoning to deal with the nonlinearity of these
problems, and do a thorough and successful finite element (FE) numerical
analysis for (1.1).

An outline of the paper is as follows. In §2, a new projection is intro-
duced and its approximation properties are studied. With the help of this
projection, the FE method and its numerical analysis is investigated and the
optimal L2 convergence is established in §3.

In this paper K is a generic positive constant and may be different each
time it is used and ε is an arbitrarily small constant. Let (φ, ψ) =

∫
Ω φψdx

and 〈φ, ψ〉 =
∫

∂Ω φψdx; the norms in Banach spaces follow those in [4, 5].
We use the inequalities

ab ≤ εa2 + 1
4εb

2, |φ|2L2(∂Ω) ≤ ε‖∇φ‖2 +K(ε)‖φ‖2,

|φ|r ≤ K(T, r)‖φ‖r+ 1
2
, 0 < r ≤ 3/2, r 6= 1.

2 A New Projection

Let µ ⊂ H1(Ω) be a finite element space associated with a quasi-regular
partition of Ω such that the elements have diameters bounded by h. Let
the index of µ be the integer k. It is frequently valuable to decompose the
convergence analysis of the FE method by passing through a FE projection of
the solution of the differential problem. To treat our problem, we introduce
a new projection: ũ(t) : [0, T ] → µ such that

(a(u)∇(ũt − ut) + b(u)∇(ũ− u) +
∫ t

0 c(u(τ))∇(ũ− u)(τ)dτ,∇v)
+λ(ũt − ut, v) − 〈g(ũ) − g(u), v〉 = 0 ∀v ∈ µ, t ∈ J,

ũ(0) = Φh,

(2.1)

where λ is a positive constant assuring coercivity of the form and Φh is an
appropriate approximation of Φ in µ.

Lemma 2.1 There exists a unique ũ(t) ∈ µ such that (2.1) being satisfied.
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Proof: We use an iterative procedure. Let V 0 ∈ µ and define {V p} by

(a(u)∇(V p
t − ut) + b(u)∇(V p − u) +

∫ t

0 c(u(τ))∇(V p−1 − u)(τ)dτ,∇v)
+λ(V p

t − ut, v) − 〈
g(V p−1) − g(u), v

〉
= 0 ∀v ∈ µ, t ∈ J,

V p(0) = Φh, ∀p ≥ 1.
(2.2)

For p ≥ 1, the unique existence of V p comes from the general theory of initial
value problems of ordinary differential equations. Setting Zp = V p+1 − V p

and v = Zp
t , it is natural to see from the above relation that

a∗‖∇Zp
t ‖2 + λ‖Zp

t ‖2≤ K[‖∇Zp‖2 + ‖Zp−1‖2
1 +

∫ t

0 ‖∇Zp−1(τ)‖2dτ ]

+a∗‖∇Zp
t ‖2 + λ

2 ‖Zp
t ‖2/2.

Using ‖Zp‖2
1 ≤ K

∫ t

0 ‖Zp
t (τ)‖2

1dτ and Gronwall’s lemma, there exists a con-
stant K∗ > 0 such that

‖Zp
t ‖2

1 ≤ K∗
∫ t

0
‖Zp−1

t ‖2
1(τ)dτ ≤ (K∗T )p

p!
, ∀p ≥ 1.

Similarly, we have a upper bound for ‖V p
t ‖1. Hence, {V p} is a Cauchy

sequence in µ and so there exists a unique ũ ∈ µ such that V p → ũ and
V p

t → ũt, as p → ∞. Lemma 2.1 is completed by letting p → ∞ in (2.2). []
Let condition (P1) denote this: ‖Φ − Φh‖ + h||Φ − Φh‖1 ≤ Khk+1‖Φ‖k+1

and condition (P2): |Φ − Φh|− 1
2

≤ Khk+1‖Φ‖k+1. Let η = u − ũ and G =∫ 1
0 gu(su+ (1 − s)ũ)ds. (2.1) is represented as

(a(u)∇ηt + b(u)∇η +
∫ t

0 c(u(τ))∇η(τ)dτ,∇v)
+λ(ηt, v)− < Gη, v >= 0 ∀v ∈ µ.

(2.3)

Lemma 2.2 Under condition (P1), there exists a K = K(u) such that: (1)

if ∂ju
∂tj ∈ Hk+1(Ω), j = 0, 1,

1∑
j=0

‖∂j∇η
∂tj ‖ ≤ K(‖u‖1,k+1 + ‖Φ‖k+1)hk; (2) if

∂ju
∂tj ∈ Hk+1(Ω), j = 0, 1, 2,

2∑
j=0

‖∂j∇η
∂tj ‖ ≤ K(‖u‖2,k+1 + ‖Φ‖k+1) hk; (3) if

∂ju
∂tj ∈ Hk+1(Ω), j = 0, . . . , 3,

3∑
j=0

‖∂j∇η
∂tj ‖ ≤ K(‖u‖3,k+1 + ‖Φ‖k+1)hk; (4) if

∂ju
∂tj ∈ Hk+1(Ω), j = 0, . . . , 4,

4∑
j=0

‖∂j∇η
∂tj ‖ ≤ K(‖u‖4,k+1 + ‖Φ‖k+1)hk, where

‖φ(t)‖2
r,s =

r∑
j=0

(‖∂jφ(t)
∂tj ‖2

s +
∫ t

0 ‖∂jφ(τ)
∂tj ‖2

sdτ), r ≥ 0.
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Proof: Let Ru(t) : [0, T ] → µ be the Ritz projection of u. From (2.3) and
the inequalities in §1, we see

a∗‖∇ηt‖2 + λ‖ηt‖2≤ (a(u)∇ηt + b(u)∇η +
∫ t

0 c(u(τ))∇η(τ)dτ,∇(ut −Rut))
+λ(ηt, ut −Rut) − 〈Gη, ut −Rut〉
−(b(u)∇η +

∫ t

0 c(u(τ))∇η(τ)dτ,∇ηt)+ < Gη, ηt >

≤ a∗
2 ‖∇ηt‖2 + λ

2 ‖ηt‖2 + ε‖ηt‖2
1

+K[‖η‖2
1 +

∫ t

0 ‖∇η(τ)‖2dτ + ‖ut −Rut‖2
1].

Noticing that η(t) = η(0)+
∫ t

0 ηt(τ)dτ and η(0) = Φ−Φh and using Gronwall’s
lemma, we get the first conclusion of Lemma 2.2.

Differentiate in time (2.3) and set A = at(t, u(t))+ b(u), B = bt(t, u(t))+
c(t, t, u(t)), C = ct(t, τ, u(τ)), D = gu(t, ũ), and E =

∫ 1
0 gu(t, su + (1 −

s)ũ)ds+ ut

∫ 1
0 guu(t, su+ (1 − s)ũ)ds. Then we derive at

(a(u)∇ηtt +A∇ηt +B∇η +
∫ t

0 C∇η(τ)dτ,∇v)
+λ(ηtt, v)− < Dηt + Eη, v >= 0 ∀v ∈ µ.

(2.4)

Similarly,

a∗‖∇ηtt‖2 + λ‖ηtt‖2 ≤ a∗
2 ‖∇ηtt‖2 + λ

2 ‖ηtt‖2 + ε‖ηtt‖2
1

+K[‖ηt‖2
1 + ‖η‖2

1 +
∫ t

0 ‖∇η(τ)‖2dτ + ‖utt −Rutt‖2
1].

Hence the second conclusion holds by using the first one. [] Differentiating
in t (2.4) similarly, we can obtain the third conclusion. The forth conclusion
can be gained by a further differentiation sequence. []

Lemma 2.3 Under conditions (P1) and (P2), there exists a K = K(u) such

that (1) if ∂ju
∂tj ∈ Hk+1(Ω), j = 0, 1,

1∑
j=0

‖∂jη
∂tj ‖ ≤ K(‖u‖1,k+1+‖Φ‖k+1) hk+1;

(2) if ∂ju
∂tj ∈ Hk+1(Ω), j = 0, 1, 2,

2∑
j=0

‖∂jη
∂tj ‖ ≤ K(‖u‖2,k+1 + ‖Φ‖k+1)hk+1;

(3) if ∂ju
∂tj ∈ Hk+1(Ω),

3∑
j=0

‖∂jη
∂tj ‖ ≤ K(‖u‖3,k+1 + ‖Φ‖k+1)hk+1, j = 0, . . . , 3;

(4) if ∂ju
∂tj ∈ Hk+1(Ω),

4∑
j=0

‖∂jη
∂tj ‖ ≤ K(‖u‖4,k+1 + ‖Φ‖k+1)hk+1, j = 0, . . . , 4.

Proof: Define α ∈ H1(Ω) in the way

(a(u)∇α+ b(u)∇η +
∫ t

0 c(u(τ))∇η(τ)dτ,∇v)
+λ(α, v) − 〈Gη, v〉 = 0 ∀v ∈ H1(Ω).

(2.5)
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By subtracting (2.5) from (2.3), we see that ũt is the standard Ritz projection
of ut − α onto µ. Hence, by the elliptic regularity of (2.5) and Lemma 2.2,
we see that

‖ηt‖ ≤ ‖α‖ +Kh(‖ηt‖1 + ‖α‖1) ≤ ‖α‖ +Khk+1(‖u‖1,k+1 + ‖Φ‖k+1). (2.6)

It remains to estimate ‖α‖. To do this, let β ∈ H1(Ω) be defined by

(a(u)∇β + b(u)∇η +
∫ t

0 c(u(τ))∇η(τ)dτ,∇v)
+λ(β, v)− < Gη, v >= (α, v) ∀v ∈ H1(Ω).

(2.7)

Setting v = β in (2.5) and v = α in (2.7) and denoting z = α − β, we find
that

‖α‖2 =
〈
η, b(u) ∂z

∂γ

〉
− (η,∇ · [b(u)∇z]) +

∫ t

0{< η(τ), c(u(τ))∂z(t)
∂γ >

−(η(τ),∇ · [c(u(τ))∇z(t)])}dτ− < Gη, z >

≤ K{|η|2− 1
2

+ ‖η‖2 +
∫ t

0 [|η(τ)|2− 1
2

+ ‖η(τ)‖2]dτ} + ε(|z|23
2

+ ‖z‖2
2 + |z|21

2
),

while subtracting (2.7) from (2.5) leads to ‖z‖2 ≤ K‖α‖, so we obtain

‖α‖ ≤ K{|η(0)|− 1
2

+ ‖η(0)‖ +
∫ t

0
[|ηt(τ)|− 1

2
+ ‖ηt(τ)‖]dτ}. (2.8)

Now, we turn to estimate |ηt|− 1
2
. For this purpose, we define ϑ ∈ H1(Ω) in

such a way

(a(u)∇ϑ+ b(u)∇η +
∫ t

0 c(u(τ))∇η(τ)dτ,∇v)
+λ(ϑ, v)− < Gη, v >=< δ, v > ∀v ∈ H1(Ω),

(2.9)

where δ ∈ H
1
2 (∂Ω), |δ| 1

2
= |ηt|− 1

2
, and < δ, ηt >= |ηt|2− 1

2
. Let ϕ = ϑ− α. It

follows from (2.5) and (2.9) that

(a(u)∇ϕ,∇v) + λ(ϕ, v) =< δ, v >, ∀v ∈ H1(Ω). (2.10)

Hence, ‖ϕ‖2 ≤ K|ηt|− 1
2
. Setting v = ηt in (2.10) and using integration by

parts, we obtain

|ηt|2− 1
2

= (a(u)∇ηt + b(u)∇η +
∫ t

0 c(u(τ))∇η(τ)dτ,∇(ϕ−Rϕ))

+λ(ηt, ϕ−Rϕ)− < Gη, ϕ−Rϕ > − < η, b(u)∂ϕ
∂γ > +(η,∇ · [b(u)∇ϕ])

− ∫ t

0{< η(τ), c(u(τ))∂ϕ(t)
∂γ > −(η(τ),∇ · [c(u(τ))∇ϕ(t)])}dτ+ < Gη, ϕ >

≤ Kh2[‖ηt‖2
1 + ‖η‖2

1 +
∫ t

0 ‖∇η(τ)‖2dτ ] +K[|η(0)|2− 1
2

+ ‖η(0)‖2]

+K
∫ t

0 [|ηt(τ)|2− 1
2

+ ‖ηt(τ)‖2dτ + ε‖ϕ‖2
2.
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Applying Lemma 2.2 and Gronwall’s lemma to above inequality, we see that

|ηt|− 1
2

≤ Khk+1(‖u‖1,k+1 + ‖Φ‖k+1) +K

∫ t

0
‖ηt(τ)‖2dτ. (2.11)

Thus (2.8) yields a upper bound for ‖α‖. Substituting this bound into (2.6),
we see again from Gronwall’s lemma that

‖ηt‖ ≤ Khk+1(‖u‖1,k+1 + ‖Φ‖k+1).

Thus the first conclusion of Lemma 2.3 is valid as a consequence of ‖η‖ ≤
K[‖η(0)‖ +

∫ t

0 ‖ηt(τ)‖dτ ].
To demonstrate the second conclusion, we introduce the auxiliary equa-

tion
(a(u)∇σ +A∇ηt +B∇η +

∫ t

0 C∇η(τ)dτ,∇v)
+λ(σ, v)− < Dηt + Eη, v >= 0 ∀v ∈ H1(Ω).

(2.12)

Subtracting (2.12) from (2.4) implies that ũtt is the Ritz projection of utt −σ

in µ. Hence, by the elliptic regularity of (2.12) and Lemma 2.2, we have

‖ηtt‖ ≤ ‖σ‖+Kh(‖ηtt‖1+‖σ‖1) ≤ ‖σ‖+Khk+1(‖u‖2,k+1+‖Φ‖k+1). (2.13)

To estimate ‖σ‖, we define ζ ∈ H1(Ω) such that

(a(u)∇ζ +A∇ηt +B∇η +
∫ t

0 C∇η(τ)dτ,∇v)
+λ(ζ, v)− < Dηt + Eη, v >= (σ, v) ∀v ∈ H1(Ω).

(2.14)

Setting v = ζ in (2.12) and v = σ in (2.14), denoting y = σ − ζ, and using
integration by parts, we derive at

‖σ‖2 ≤ K{|ηt|2− 1
2

+ |η|2− 1
2

+ ‖ηt‖2 + ‖η‖2

+
∫ t

0 [|η(τ)|2− 1
2

+ ‖η(τ)‖2]dτ} + ε‖y‖2
2.

(2.15)

Note that subtracting (2.14) from (2.12) results in ‖y‖2 ≤ K‖σ‖, so from
(2.15), (2.11), and the first conclusion, we can show that

‖σ‖ ≤ K(‖u‖1,k+1 + ‖Φ‖k+1).

Now, by (2.13), we obtain the second conclusion of Lemma 2.3. Differentia-
ting in time (2.4) for one and two times, we can derive the third and forth
conclusions. []

It is easy to show that
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Lemma 2.4 Under conditions (P1), (P2), and k ≥ d/2, there exists a K =
K(u) such that: (1) (1) if ∂ju

∂tj ∈ Hk+1(Ω), j = 0, 1, then ‖∂ju
∂tj ‖L∞(L∞) +

‖∂j∇ũ
∂tj ‖L∞(L∞) ≤ K; (2) if ∂ju

∂tj ∈ Hk+1(Ω), j = 0, 1, 2, then ‖∂ju
∂tj ‖L∞(L∞) +

‖∂j∇ũ
∂tj ‖L∞(L∞) ≤ K; (3) if ∂ju

∂tj ∈ Hk+1(Ω), j = 0, . . . , 3, then ‖∂ju
∂tj ‖L∞(L∞)+

‖∂j∇ũ
∂tj ‖L∞(L∞) ≤ K; (4) if ∂ju

∂tj ∈ Hk+1(Ω), j = 0, . . . , 4, then ‖∂ju
∂tj ‖L∞(L∞)+

‖∂j∇ũ
∂tj ‖L∞(L∞) ≤ K.

Remark. If we set c ≡ 0 in (2.1), then the projection becomes a Sobolev
projection. Since formulation (2.1) also includes the Volterra term, we call
the new projection Sobolev-Volterra (SV) projection. We see, on one hand,
from the above lemmas, that the SV projection has the same priori appro-
ximation properties as the Ritz, Ritz-Volterra, and Sobolev projections. On
the other hand, it reflects the global property of the combination of antihunt
term, diffusion term, and memory term, so it may be very convenient to the
FE numerical analysis for the pseudo-hyperbolic integral-differential equation
and pseudo-parabolic integral-differential equation. In the next section, we
apply the SV projection to simplify the FE analysis for problem (1.1).

3 The FE Analysis

Define the continuous-time finite element scheme: finding U(t) ∈ µ, such that

(q(U)Utt, v) + (a(U)∇Ut + b(U)∇U +
∫ t

0 c(U(τ))∇U(τ)dτ,∇v)
= (f(U), v)+ < g(U), v > ∀v ∈ µ, t ∈ J,

U = Φh, Ut = Ψh, t = 0,

(3.1)

where Ψh is an approximation of Ψ in µ, c(U(τ)) = c(t, τ, x, U(x, τ)), and
q(U) = q(x, t, U).

Theorem 3.1 Under conditions (P1), (P2), k ≥ d/2, and ∂ju
∂tj ∈ Hk+1(Ω),

j = 0, 1, 2, for scheme (3.1), then

‖Ut − ut‖L∞(L2) + ‖U − u‖L∞(L2)

+h[‖Ut − ut‖L2(H1) + ‖U − u‖L∞(H1)] = O(hk+1).
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Proof: Let ξ = U − ũ. Then U − u = ξ − η. Manipulation of (1.1), (3.1),
and (2.1) leads to the error equation

(q(U)ξtt, v) + (a(U)∇ξt + b(U)∇ξ
+

∫ t

0 c(U(τ))∇ξ(τ)dτ,∇v) = ([q(u) − q(U)]utt

+q(U)ηtt + [f(U) − f(u)] − ληt, v)

+([a(u) − a(U)]∇ũt + [b(u) − b(U)]∇ũ+
∫ t

0 [c(u(τ))
−c(U(τ))]∇ũ(τ)dτ,∇v)+ < g(U) − g(ũ), v > ∀v ∈ µ, t ∈ J,

ξ(0) = 0, ξt(0) = Ψh − ũt(0).

(3.2)

Let v = ξt and estimate (3.2) term by term; we see that

1
2

d
dt (q(U)ξt, ξt) + (a∗ − ε)‖∇ξt‖2 ≤ K[‖η‖2 + ‖ηt‖2 + ‖ηtt‖2

+
∫ t

0 ‖η(τ)‖2dτ ] +K[‖ξ‖2
1 + ‖ξt‖2 +

∫ t

0 ‖ξ(τ)‖2
1dτ ] + ε‖ξt‖2

1.

Integrating this inequality for t from 0 to s, 0 ≤ s ≤ T , and using Gronwall’s
lemma, we obtain Theorem 3.1. []

Divide [0, T ] into M equal intervals, and let ∆t = T/M , tl = l∆t, tl+ 1
2

=
(1 + 1

2 )∆t, φl = φ(tl), dtφ
l = 1

∆t (φ
l+1 − φl), ∂tφ

l = 1
2∆t (φ

l+1 − φl−1),

∂ttφ
l = 1

(∆t)2 (φl+1−2φl+φl−1), φl+ 1
2 = 1

2 (φl+1+φl), and φ
l
= 1

2 (φl+1+φl−1).
We have ∫ tl+1

tl

φ(τ)ψ(τ)dτ = ∆tφ(tl+ 1
2
)ψl+ 1

2 + εl(φ, ψ).

A discrete-time finite element scheme can be defined: Find Un+1 ∈ µ such
that

(qn(U)∂ttU
n, v) + (an(U)∇∂tU

n + bn(U)∇Un + ∆t
n−1∑
l=0

cnl(U)∇U l+ 1
2 ,∇v)

= (fn(U), v) + 〈gn(U), v〉 ∀v ∈ µ, n = 1, 2, . . . ,
(3.3)

where cnl(U) = c(tn, tl+ 1
2
, x, U l+ 1

2 ) and qn(U) = q(x, tn, Un). Let ξn =
Un − ũn. Then Un − un = ξn − ηn; we have such an approximation result.

Theorem 3.2 Under conditions (P1), (P2), k ≥ d/2, ∂ju
∂tj ∈ Hk+1(Ω), j =

0, . . . , 4, and
‖dtξ

0‖1 + ‖ξ0‖1 = O(hk+1 + (∆t)2), (3.4)

for scheme (3.3), then,

‖∂tt(U − u)‖L2(L2) + ‖dt(U − u)‖L∞(L2) + ‖U − u‖L∞(L2)

+h[‖dt(U − u)‖L∞(H1) + ‖U − u‖L∞(H1)] = O(hk+1 + (∆t)2).
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Proof: We see from (1.1), (3.3), and (2.1) that ξ satisfies that, for n ≥ 1
and ∀v ∈ µ,

2∑
i=1

Ln
i = (qn(U)∂ttξ

n, v) + (an(U)∇∂tξ
n,∇v)

= ([qn(u) − qn(U)]utt + qn(U)[(un
tt − ∂ttu

n) + ∂ttη
n]

+[fn(u) − fn(U)] − ληn
t , v)

+([an(u) − an(U)]∇ũn
t + an(U)(∇ũn

t − ∇∂tũ
n),∇v)

−(bn(U)∇ξn − [bn(u) − bn(U)]∇ũn,∇v)
−(∆t

n−1∑
l=0

cnl(U)∇ξl+ 1
2 + ∆t

n−1∑
l=0

[ĉnl(u) − cnl(U)]∇ũl+ 1
2

−
n−1∑
l=0

εl(c,∇ũ)|t=tn
,∇v)+ < gn(U) − gn(ũ), v >=

5∑
i=1

Rn
i ,

(3.5)

where ĉnl(u) = c(tn, tl+ 1
2
, x, u(x, tl+ 1

2
)). Setting v = ∂ttξ

n in (3.5), we see
that

2∆t
N−1∑
n=1

Ln
2 ≥ a∗‖∇dtξ

N−1‖2 −K‖∇dtξ
0‖2

−K∆t
N−2∑
n=0

(1 + h− d
2 ‖dtξ

n‖)‖∇dtξ
n‖2.

(3.6)

and

2∆t
N−1∑
n=1

5∑
i=2

Rn
i ≤ K[‖ξN−1‖2

1 + ‖ξ1‖2
1 + ‖dtξ

0‖2
1

+‖η‖2
L∞(L2) + ‖ηt‖2

L2(L2) + (∆t)4] + ε‖dtξ
N−1‖2

1

+K∆t
N−2∑
n=1

[‖dtξ
n‖2

1 + (1 + h− d
2 ‖dtξ

n‖)‖∇dtξ
n‖2] +

N−1∑
n=1

‖ξn‖2
1,

(3.7)

where ∂ttξ
n = 1

∆t (dtξ
n −dtξ

n−1) and
N−1∑
n=1

(φn, ψn −ψn−1) = (φN−1, ψN−1)−

(φ1, ψ0) +
N−2∑
n=1

(φn − φn+1, ψn) have been used to accomplish the steps of

(3.7). It is easy to estimate other terms. Applying these relations to (3.5)

and using ‖ξn‖2
1 ≤ K‖ξ0‖2

1 + K∆t
n−1∑
l=0

‖dtξ
l‖2

1 and ‖dtξ
N−1‖2 ≤ K‖dtξ

0‖2

+K∆t
N−1∑
n=0

‖dtξ
n‖2 + ε∆t

N−1∑
n=1

‖∂ttξ
n‖2, we obtain, for N ≥ 3,

∆t
N−1∑
n=1

‖∂ttξ
n‖2 + ‖dtξ

N−1‖2
1 ≤ K[‖dtξ

0‖2
1 + ‖ξ0‖2

1

+(∆t)4 + ‖η‖2
L∞(L2) + ‖ηt‖2

L2(L2) + ‖ηtt‖2
L2(L2)]

+K2∆t
N−2∑
n=0

‖dtξ
n‖2

1 +K3∆t
N−2∑
n=0

(1 + h− d
2 ‖dtξ

n‖)‖∇dtξ
n‖2.

(3.8)
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For N = 2, we obtain (3.8) by estimating Rn
i (i = 2, . . . , 5) directly. Under

condition (3.4), the first term on the right side of (3.8) is less than K1[h2k+2

+(∆t)4]. We obtain Theorem 3.2 using an induction hypothesis procedure,
together with Lemmas 2.2 and 2.3. []

Letting v = ∂ttU
n in (3.3), we have the stability result.

Theorem 3.3 Under the conditions of Theorem 3.2 for scheme (3.3), N ≥
2, then

∆t
N−1∑
n=1

‖∂ttU
n‖2 + ‖dtU

N−1‖2
1 + ‖UN‖2

1

≤ K[‖dtU
0‖2

1 + ‖U0‖2
1 + ∆t

N−1∑
n=1

‖fn(U)‖2

+∆t
N−1∑
n=1

|dtg
n−1(U)|2L2(∂Ω) + |gN−1(U)|2L2(∂Ω) + |g0(U)|2L2(∂Ω)].

(3.9)

Another time-discrete finite element scheme is defined: Find Un+1,Wn+1

∈ µ such that

(qn(U)∂tW
n, v) + (an(U)∇Wn

+ bn(U)∇Un + ∆t
n−1∑
l=0

cnl(U)∇U l+ 1
2 ,∇v)

= (fn(U), v)+ < gn(U), v > ∀v ∈ µ, n = 1, 2, . . . ,

dtU
n = Wn+ 1

2 , n = 0, 1, 2, . . . .
(3.10)

Denote w = ut, w̃ = ũt, ρ = w − w̃, and θn = Wn − w̃n. Then we have

Theorem 3.4 Under conditions (P1), (P2), k ≥ d/2, ∂ju
∂tj ∈ Hk+1(Ω), j =

0, . . . , 4, and

‖θ0‖1 + ‖θ1‖1 + ‖ξ0‖1 = O(hk+1 + (∆t)2), (3.11)

for scheme (3.10), then

‖∂t(W − w)‖L2(L2) + ‖W − w‖L∞(L2) + ‖U − u‖L∞(L2)

+h[‖W − w‖L∞(H1) + ‖U − u‖L∞(H1)] = O(hk+1 + (∆t)2).

Proof: By (1.1), (3.10), and (2.1), we have the error equation

(qn(U)∂tθ
n, v) + (an(U)∇θn

,∇v) = ([qn(u) − qn(U)]wt

+qn(U)[(wn
t − ∂tw

n) + ∂tρ
n] + [fn(u) − fn(U)] − ληn

t , v)

+([an(u) − an(U)]∇w̃n + an(U)(∇w̃n − ∇w̃n
),∇v) +

5∑
i=3

Rn
i ,

(3.12)
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where Rn
i (i = 3, 4, 5) follows the form in (3.5). Setting v = ∂tθ

n = (θn+ 1
2 −

θn− 1
2 )/∆t in (3.12) and estimating the terms in a similar way as that for

Theorem 3.2, we obtain

∆t‖∂tθ
1‖2 + ‖θ2‖2

1 ≤ K[‖θ0‖2
1 + ∆t‖θ1‖2

1 + ‖ξ0‖2
1 + ∆th2k+2 + (∆t)4],

∆t
N−1∑
n=1

‖∂tθ
n‖2 + ‖θN‖2

1 + ‖θN−1‖2
1 ≤ K[‖θ0‖2

1 + ‖θ1‖2
1 + ‖ξ0‖2

1

+(∆t)4 + ‖η‖2
L∞(L2) + ‖ηt‖2

L2(L2) + ‖ρt‖2
L2(L2)] +K2∆t

N−1∑
n=1

‖θn‖2
1

+K3∆t
N−1∑
n=2

[1 + h− d
2 (‖θn− 1

2 ‖ + ‖θn− 3
2 ‖)](‖θn‖2

1 + ‖θn−1‖2
1), N ≥ 3.

With an analogous inductive hypothesis reasoning procedure to Theorem 3.2,
Theorem 3.4 can be proved. []

Theorem 3.5 Under the conditions of Theorem 3.4 for scheme (3.10), N ≥
2, then

∆t
N−1∑
n=1

‖∂tW
n‖2 + ‖WN‖2

1 + ‖WN−1‖2
1 + ‖UN‖2

1 + ‖UN−1‖2
1

≤ K[‖W 0‖2
1 + ‖W 1‖2

1 + ‖U0‖2
1 + ∆t

N−1∑
n=1

‖fn(U)‖2

+∆t
N−1∑
n=1

|dtg
n−1(U)|2L2(∂Ω) + |gN−1(U)|2L2(∂Ω) + |g0(U)|2L2(∂Ω)].

From all above results, we see that the FE schemes proposed in this paper
are all uniquely resolvable and have optimal H1 and L2 convergent properties
to the original problem.

Remark 1. In the theorems in §3, we assumed k ≥ d/2, which is needed
in Lemma 2.4. However, in the case of semilinear equations, e.g., a = a(x, t),
b = b(x, t), and c = c(t, τ, x), since Lemma 2.4 is no longer necessary in the
numerical analysis, this restriction on k can be removed.

Remark 2. In almost all of the lemmas and theorems in this paper, we
used conditions (P1) and (P2). Practically, these assumptions are not difficult
to satisfy, for example, provided that Φ ∈ Hk+1(Ω) and Φh is given by

(∇(Φ − Φh),∇v) + (Φ − Φh, v) = 0, ∀v ∈ µ.

It is trivial that (P1) and (P2) are available [3].
Remark 3. The idea in this paper can be used to a more generalized

case, e.g., when the ∇ · (a∇ut + b∇u+
∫ t

0 c∇u(τ)dτ) term in equation (1.1)
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takes a more generic form
d∑

i,j=1

∂
∂xi

(aij
∂ut

∂xj
+ bij

∂u
∂xj

+
∫ t

0 cij
∂u(τ)
∂xj

dτ), where

aij = aij(x, t, u), bij = bij(x, t, u), cij = cij(t, τ, x, u(x, τ)), and A = (aij) is a
d×d symmetric and positive-defined matrix. We can present similar schemes
and obtain similar conclusions as we have done here.
Acknowledgments. The author thanks Professor Yirang Yuan for his hel-
pful suggestions, and Professors Longjun Shen and Xijun Yu for their warmly
encouragement.
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A CFL-Free Explicit Scheme with
Compression for Linear Hyperbolic Equations

Ronald A. DeVore Hong Wang Jiang-Guo Liu
Hong Xu

Abstract

We develop an unconditionally stable, explicit numerical scheme
for linear hyperbolic equations, which arises as an advection-reaction
equation in porous medium flows. The derived scheme generates accu-
rate numerical solutions even if large time steps are used, and conserves
mass. Furthermore, this scheme has the capability of performing ad-
aptive compression while maintaining the accuracy of the compressed
solution and mass conservation. Numerical results show the strong
potential of the method.

KEYWORDS: characteristic methods, hyperbolic equations, multiresolution
analysis, wavelet decomposition

1 Introduction

Hyperbolic partial differential equations describe the displacement of oil by
injected fluid in petroleum recovery, the subsurface contaminant transport
and remediation, aerodynamics, and many other applications. Because of
the moving steep fronts present in their solutions, the numerical treatment
of these equations often presents severe difficulties. In late 1920’s, Courant,
Friedrichs, and Lewy proved the famous result that there are no explicit, un-
conditionally stable, consistent finite difference schemes for hyperbolic partial
differential equations [2]. Consequently, most numerical methods developed
for hyperbolic equations are explicit but subject to the well-known Courant-
Friedrichs-Lewy (CFL) condition. Very small time steps often have to be
used in numerical simulations to meet the stability requirement of the nu-
merical methods. Implicit methods could be unconditionally stable, but an
algebraic system must be solved at each time step in order to obtain nume-
rical solutions.

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 116–123, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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In this paper we develop an unconditionally stable, explicit numerical
scheme for linear hyperbolic equations. The derived scheme generates ac-
curate numerical solutions even if large time steps are used, and conserves
mass. Furthermore, this scheme has the capability of carrying out adaptive
compression while maintaining the accuracy of the numerical solution and
mass conservation. Computational results are presented to show the strong
potential of the method developed.

2 A Reference Equation

We consider the initial-value problem for the linear hyperbolic equation

ut + ∇ · (vu) +Ku = f(x, t), (x, t) ∈ IRd × (0, T ],
u(x, 0) = u0(x), x ∈ IRd,

(2.1)

where v(x, t) := (V1(x, t), V2(x, t), . . . , Vd(x, t)) is a fluid velocity field,K(x, t)
is a first-order reaction coefficient, f(x, t) is a given source function, u(x, t) is
the unknown function, and u0(x) is a given initial condition. x := (x1, . . . , xd),
ut := ∂u

∂t , ∇ := ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

). We assume that u0(x) and f(x, t) have
compact support, so the exact solution u(x, t) also has compact support for
any finite time t > 0.

We define a uniform partition on the temporal interval [0, T ] by tn := n∆t
with ∆t = T/N . If we choose the test functions w(x, t) to be of compact
support in space, to vanish outside the interval (tn−1, tn], and to be discon-
tinuous in time at time tn−1, the weak formulation for Eq. (2.1) is

∫
IRd

u(x, tn)w(x, tn)dx −
∫ tn

tn−1

∫
IRd

u(wt + v · ∇w −Kw)(x, t)dxdt

=
∫

IRd

u(x, tn−1)w(x, t+n−1)dx +
∫ tn

tn−1

∫
IRd

f(x, t)w(x, t)dxdt,
(2.2)

where w(x, t+n−1) := limt→t+
n−1

w(x, t) takes into account the fact that w(x, t)
is discontinuous in time at time tn−1.

Motivated by the ELLAM framework of Celia et al [1], the test functions
w in Eq. (2.2) are chosen from the solution space of the adjoint equation
of Eq. (2.1). Let y = r(θ; x̄, t̄), with t̄ ∈ [tn−1, tn], be the characteristic
determined by

dy
dθ

= v(y, θ), with y|θ=t̄ = x̄. (2.3)
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Then the adjoint equation of Eq. (2.1) is rewritten as

− d

dθ
w(r(θ; x̄, t̄), θ) +K(r(θ; x̄, t̄), θ)w(r(θ; x̄, t̄), θ) = 0,

w(r(θ; x̄, t̄), θ)|θ=t̄ = w(x̄, t̄),
(2.4)

leading to the following expression for w

w(r(θ; x̄, t̄), θ) = w(x̄, t̄)e−
∫ t̄

θ
K(r(γ;x̄,t̄),γ)dγ

. (2.5)

Therefore, once the test functions w(x, tn) are specified at time tn, they are
determined completely and in fact vary exponentially along the characteristic
r(θ;x, tn) for θ ∈ [tn−1, tn].

To avoid confusion in the derivation, we replace the dummy variables x
and t in the second term on the right-hand side of Eq. (2.2) by y and θ. For
any y ∈ IRd, there exists an x ∈ IRd such that y = r(θ;x, tn). We obtain

∫ tn

tn−1

∫
IRd

f(y, θ)w(y, θ)dydθ

=
∫

IRd

∫ tn

tn−1

f(r(θ;x, tn), θ)w(r(θ;x, tn), θ)
∣∣∣∣∂r(θ;x, tn)

∂x

∣∣∣∣ dθdx
=

∫
IRd

F (x, tn)w(x, tn)

[∫ tn

tn−1

e−K(x,tn)(tn−θ)dθ

]
dx + E1(f, w)

=
∫

IRd

Λ(x, tn)f(x, tn)w(x, tn)dx + E1(f, w).

(2.6)

Here Λ(x, tn) = (1 − e−K(x,tn)∆t)/K(x, tn) if K(x, tn) 6= 0, or ∆t otherwise.
E1(f, w) is the local truncation error.

Incorporating Eq. (2.6) into Eq. (2.2), we obtain a reference equation
∫

IRd

u(x, tn)w(x, tn)dx

=
∫

IRd

u(x, tn−1)w(x, t+n−1)dx +
∫

IRd

Λ(x, tn)(fw)(x, tn)dx + E(w),
(2.7)

where E(w) =
∫ tn

tn−1

∫
IRd u[wt + v · ∇w −Kw](x, t)dxdt+ E1(f, w).

3 Multiresolution and Wavelet Decomposition

To develop a numerical scheme based on the reference equation (2.7), we
need to define the trial and test functions at time tn. To do so, we recall the
notions of multiresolution analysis and wavelet decompositions.
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In the standard Fourier analysis, L2-functions are represented by linear
combinations of sines and cosines. In 1910, Haar studied the representation
of L2-functions by step functions taking values ±1 [5]. In the 1980’s, these
ideas were explored and developed further into the theory of wavelets. The
first wavelets were introduced in early 1980’s by Stromberg [10] and Morlet
et al [8]. One of the best ways of constructing wavelets is multiresolution
analysis. This approach began in image-processing [9, 11] and was introdu-
ced into mathematics by Mallat [6]. Multiresolution analysis was used by
Daubechies [3] to construct compactly supported orthogonal wavelets with
arbitrary smoothness, which include the Haar wavelets as the simplest case.

Definition A sequence of closed subspaces {Vj}j∈ZZ (ZZ-the set of all in-
tegers) of L2(IR) is a Multiresolution Analysis if

(a) these spaces are nested: Vj ⊂ Vj+1 for ∀j ∈ ZZ;

(b) these spaces are dense in L2(IR): ∪j∈ZZVj = L2(IR) and ∩j∈ZZVj = ∅;

(c) V0 is invariant under integer shifts: f(·) ∈ V0 =⇒ f(·−k) ∈ V0, ∀k ∈ ZZ;

(d) Vj is obtained from V0 by dilation: f(·) ∈ Vj ⇐⇒ f(2−j ·) ∈ V0, ∀j ∈ ZZ;

(e) V0 is generated by a single (the so-called scaling) φ and its translates:
{φ0,k : k ∈ ZZ} is an orthonormal basis in V0, where

φj,k(x) := 2j/2φ(2jx− k), j, k ∈ ZZ. (3.1)

The conditions (d) and (e) in the definition implies that the family {φj,k :
k ∈ ZZ} forms an orthonormal basis for Vj . Let Pj : L2(IR) −→ Vj be
the orthogonal projection operator, then the conditions (a) and (b) in the
definition concludes that for any f ∈ L2(IR)

lim
j→+∞

‖Pjf − f‖L2(IR) = 0, (3.2)

i.e.,

Pjf =
∑
k∈ZZ

(f, φj,k)φj,k −→ f, as j → +∞. (3.3)

Let Wj−1 be the orthogonal complement of Vj−1 in Vj

Vj = Vj−1 ⊕ Wj−1 = . . .
= VJ ⊕ WJ ⊕ WJ+1 ⊕ . . .⊕ Wj−1, for j > J.

(3.4)
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Then, if f ∈ L2(IR), the telescoping sum

Pjf = PJf +
j−1∑
i=J

(Pi+1f − Pif) (3.5)

represents Pjf ∈ Vj as an element of VJ ⊕WJ ⊕WJ+1⊕ . . .⊕Wj−1. By (3.2),
Eq. (3.5) provides an approach of approximating arbitrary L2-functions by
sequences of functions from VJ and Wi for J ≤ j < +∞. More importantly,
the spaces Wj can be generated by a single (the so-called wavelet) function
ψ. In other words, ψ and its integer translates ψ0,k, with ψj,k being defined
by

ψj,k(x) := 2j/2ψ(2jx− k), j, k ∈ ZZ, (3.6)

constitute an orthonormal basis for W0. For each fixed j, the ψj,k (k ∈ ZZ)
form an orthogonal basis for Wj .

4 A CFL-Free Explicit Scheme
with Conservative Compression

In this section we develop a CFL-free, explicit scheme for the initial-value
problem (2.1). We define the finite-dimensional space Sj(IRd) to be the tensor
product of the one-dimensional space Vj

Sj(IRd) := (Vj(IR))d = span {Φj,k(x)}k=(k1,k2,...,kd)∈ZZd , (4.1)

where Φj,k(x) := φj,k1(x1)φj,k2(x2) . . . φj,kd
(xd) and φj,k(x) ∈ Vj(IR) is defi-

ned by Eq. (3.1).
With these preparations, we replace the exact solution u in Eq. (2.7)

by the trial functions U(x, tn) ∈ Sj(IRd) and drop the error term E(w) in
Eq. (2.7), leading to the following numerical scheme: find U(x, tn) ∈ S(IRd)
such that∫

IRd

U(x, tn)w(x, tn)dx

=
∫

IRd

U(x, tn−1)w(x, t+n−1)dx +
∫

IRd

Λ(x, tn)f(x, tn)w(x, tn)dx,

∀w(x, tn) = Φj,k(x) ∈ Sj(IRd).

(4.2)

Although the integrals in Eq. (4.2) are formally defined on the space IRd, they
are in fact supported locally since the test functions w(x, tn) = Φj,k(x) have
compact support. Moreover, because the solution U(x, tn−1) and f(x, tn)
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have compact support, Eq. (4.2) only needs a finite number of operations at
each time level. Thirdly, because the scaling functions Φj,k(x), k ∈ ZZd, form
an orthonormal system for Sj(IRd), the scheme (4.2) is explicit. It can be
proven that the scheme (4.2) is unconditionally stable.

It is well known that in practice the solutions of linear transport equations
are fairly smooth outside some very small (dynamic) regions, where the solu-
tions can develop steep fronts or even shock discontinuities. Therefore, some
kind of local refinement or adaptive techniques should be used. Extensive
research has been conducted in this regard in the finite difference, finite ele-
ment, and finite volume methods. In the current context, this can be realized
in terms of compression in a very natural way. For example, we can apply a
thresholding to the scheme (4.2) to minimize the number of equations that
need to be formulated and solved, and so significantly improve the computa-
tional efficiency. However, a direct application to the scaling functions Φj,k

will introduce mass balance error. In contrast, because of their vanishing
moments, applying such a technique to the wavelets does not affect mass
balance. Hence, we use the wavelet decomposition (3.4) to choose another
basis for the space Vj(IR)

Vj(IR) = span
{
φ

(α)
l,k (x)

}
k∈ZZ, J≤l≤j, α=0,1

, (4.3)

where φ(0)
l,k (x) := φl,k(x) and φ

(1)
l,k (x) := ψl,k(x). This leads to another ex-

pression for the space Sj(IRd)

Sj(IRd) = span
{

Φ(α)
l,k (x)

}
k∈ZZd, J≤l≤j, α=(α1,α2,...,αd)∈{0,1}d

. (4.4)

In this case, the numerical scheme is still defined by Eq. (4.2), but using
a different basis for Sj(IRd). We begin by projecting the initial condition
u0(x) onto the space Sj(IRd) to obtain an approximant Ũ0(x, t0). For n =
1, 2, . . . , N , we apply a thresholding technique to compress Ũ0(x, tn−1) to
obtain U(x, tn−1). Then, using its wavelet expansion as an error indicator,
we solve the reduced scheme (4.2) at time step tn with the minimal number
of basis functions used to obtain Ũ(x, tn). Next, we compress Ũ(x, tn) to
obtain U(x, tn). We continue this process until we reach the final time step
tN = T .
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5 Numerical Experiments

In this section we present numerical results to show the potential of the
numerical scheme developed in this paper. The spatial domain is Ω = (0, 5),
the time interval is [0, T ] = [0, 2], a velocity field V = 1 + 0.1x is chosen,
K = f = 0. The initial condition u0(x) is

Figure 1:The initial condition u0(x).

u0(x) := Imp(x; 1, 2, 0.05) − 0.2 Tri(x; 1.5, 0.1), (5.1)

with the hat function Tri(x; a, b) and the impulse function Imp(x; a, b, c) being
defined by

Tri(x; a, b) :=




1 +
x− a

b
if a− b ≤ x ≤ a,

1 − x− a

b
if a ≤ x ≤ a+ b,

0 otherwise,

(5.2)

and

Imp(x; a, b, c) :=
1
2

[
erf

(
x− 1
0.05

)
− erf

(
x− 2
0.05

)]
, (5.3)

where the error function erf(x) := (2/
√
π)

∫ x

0 e
−z2

dz. The initial condition
u0(x) is plotted in Figure 1.

In the numerical experiments, we use a time step of ∆t = 0.4. The coarse
and fine spatial levels are J = 3 and j = 7, respectively. This leads to a
maximal Courant number of 192. At the final time T = 2, the L1 error of the
uncompressed solution is 0.00477 while the L1 error of the compressed solu-
tion is 0.00515. The compression ratio is 30.19. We plot the uncompressed
and compressed solutions against the analytical solution in Figure 2.
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Figure 2:The analytical, uncompressed, and compressed numerical solutions.
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Maximizing Cache Memory Usage for
Multigrid Algorithms for Applications

of Fluid Flow in Porous Media
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Abstract
Computers today rely heavily on good utilization of their cache me-

mory subsystems. Compilers are optimized for business applications,
not scientific computing ones, however. Automatic tiling of complex
numerical algorithms for solving partial differential equations is simply
not provided by compilers. Thus, absolutely terrible cache performance
is a common result.

Multigrid algorithms combine several numerical algorithms into a
more complicated algorithm. In this paper, an algorithm is derived
that allows for data to pass through cache exactly once per multigrid
level during a V cycle before the level changes. This is optimal cache
usage for large problems that do not fit entirely in cache. The numerical
techniques and algorithms discussed in this paper can be easily applied
to numerical simulation of fluid flows in porous media.

KEYWORDS: multigrid, cache, threads, sparse matrix, iterative methods,
domain decomposition, compiler optimization

1 Introduction

Multigrid methods are widely known as the fastest methods for solving elliptic
partial differential equations. This belief was derived when computers were
designed very differently than today. Accessing one word of data took a set
amount of time due to computers having one level of memory.

Since the early 1980’s, processors have sped up 5 times faster per year
than memory. Multilevel memories, using memory caches were developed
to compensate for the uneven speed ups in the hardware. Essentially all
computers today, from laptops to distributed memory supercomputers use
cache memories to keep the processors busy.
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Figure 1: Simple grid with red points marked

By the term cache, we mean a fast memory unit closely coupled to the
processor. In the interesting cases, the cache is further divided into a great
many cache lines, which hold copies of contiguous locations of main memory.
The cache lines may hold data from quite separate parts of main memory.

Tiling is the process of decomposing a computation into smaller blocks
and doing all of the computing in each block one at a time. Tiling is an
attractive method for improving data locality. In some cases, compilers can
do this automatically. However, this is rarely the case for realistic scientific
codes. In fact, even for simple examples, manual help from the programmers
is, unfortunately, necessary.

Language standards interfere with compiler optimizations. Due to the
requirements about loop variable values at any given moment in the compu-
tation, compilers are not allowed to fuse nested loops into a single loop. In
part, it is due to coding styles that make very high level code optimization
(nearly) impossible [11].

Before transforming the standard Gauss-Seidel algorithms into cache aware
versions, let us define two operations for updating the approximate solution
on either one or two rows of a grid:

Update( row, color [, direction] )

and

UpdateRedBlack( row, [, direction] )

We implicitly assume that both Update and UpdateRedBlack only compute
on rows that actually exist.

The operation Update does a Gauss-Seidel update in each of the columns
of a single row in the grid. The color is one of red, black, or all. The direction
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Standard Cache aware
1. Do j = 1, N 1. Update(1, red).

1a. Update(j, red). 2. Do j = 2, N
2. Do j = 1, N 2a. UpdateRedBlack(j).

2a. Update(j, black). 3. Update(N , black).

Figure 2: Standard and cache aware Gauss-Seidel

is optional and can be natural or reverse. The natural order is assumed unless
a direction is given. Hence, symmetric Gauss-Seidel is easily implemented.

The operation UpdateRedBlack operates on all of the red points (xi, yj)
in row j of the grid and on all of the black points (xi, yj±1) in the preceding
row j±1 (the updates are paired). The ± depends on the choice of direction.
This fuses the red-black calculation so that we do a red-black ordered Gauss-
Seidel with only one sweep across the grid instead of the standard two passes.

The update operations can be modified for SOR, SSOR, or ADI relaxation
methods. Within the update operations we can further optimize the process
by including Linpack style optimizations like loop unrolling to get 2 − 7
updates per iteration through the loop.

Some of the motivation behind this paper can be summarized in a simple
example. Consider the grid in Figure 1, where the boundary points are
included in the grid. Both standard and cache aware algorithms for the
red-black ordered Gauss-Seidel iteration are given in Figure 2.

Each iteration of the standard algorithm, all of the data passes through
the cache twice. Hence, with a small change in the algorithm’s implementa-
tion, the data only passes through cache once. Unfortunately, no compiler
for commonly used languages (e.g., Fortran, C, or C++) seems to exist that
can optimize the first form of the red-black ordered Gauss-Seidel algorithm
automatically into the second form.

Multigrid algorithms combine a number of operations in order to work.
These include iterative methods (typically relaxation methods), residual com-
putation, projection of residuals onto a coarser grid, and interpolation of
corrections onto a finer grid. These are typically programmed as separate
routines, which makes the components easy to replace and modify.

However, a number of components re-use data in a manner that is suitable
for algorithms that are cache aware. Algorithms will be developed such that
data passes through the memory cache once while computing on a given level
before a level change.
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This paper is concerned with algorithmic changes that are highly por-
table. Such techniques as loop unrolling, though mentioned, are not really
stressed. The intention is that codes written using the algorithms in this
paper will work well on anything from a PC to a high end RISC processor
based supercomputer with only trivial tuning (one parameter). This means
that we are not trying to get every last floating and fixed point operation out
of a computer, just an integer factor speed up for a modest amount of work.

2 Relaxation Methodology and Notation

Consider solving the following set of problems:

Aiui = fi, 1 ≤ i ≤ k,

where ui ∈ IRni and ni > ni+1. Level 1 is the real problem that the solution is
wanted on. All other levels are smaller, or coarser, approximations to level 1.
The linear systems result from discretizing a partial differential equation
over a given grid Ωi. The discretization can be any standard finite element,
difference, volume, or wavelet approach (see [1] and [2] for examples of this
approach). Further, the discrete grids Ωi will be assumed to be structured
and regular.

2.1 Once through Cache Naturally Ordered Gauss-Seidel

Consider the naturally ordered Gauss-Seidel first. Let us restrict our atten-
tion to matrices Aj which are based on discretization methods which are local
to only 3 neighboring rows of the grid (e.g., a 5 or 9 point discretization).
We have to assume that ` + m − 1 rows of a N×N grid G fit entirely into
cache simultaneously and that m < `.

Figure 3 contains the complete algorithm for passing data through cache
only once for the naturally ordered Gauss-Seidel. There are two special cases
to the cache aware algorithm: the first block of rows and the rest of the
blocks.

The first case is for the first ` rows of the grid. At the end of step 1 in
Figure 3, the data associated with rows 1 to ` has been brought into cache
only once, not m times. The data in rows 1 to `−m+1 has been updated m
times. The data in rows j, `−m+ 2≤j≤` has been updated `− j + 1 times.

Once the first block of grid rows is partially updated, we have a new block
to update and must also finish updating the previous block of grid rows. This
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Algorithm Cache-GSNat
1. Do it = 0,m− 1

1a. Do i = 1, `− it
1a1. Update(i, all).

2. Do j = `+ 1, N, `.
2a. Do it = 0,m− 1

2a1. Set j1 = min(j + `,N).
2a2. If j + ` < N , then

2a2a. j2 = max(j1 − it− 1, j).
2a3. Else

2a3a. j2 = N
2a4. Do i = j, j2

2a4a. Update(i, all).
2a5. Do i = j − 1, j + it−m+ 1,−1

2a5a. Update(i, all).

Figure 3: Once through cache naturally ordered Gauss-Seidel algorithm

corresponds to step 2 in Figure 3. Note that the second inner loop (step 2a3)
runs in the opposite order as the first inner loop (step 2a2), which ensures
that the updates are bitwise identical to the standard algorithm. In effect, we
have applied a domain decomposition methodology to the standard iteration.
Each iteration requires a new, slightly smaller domain.

The cache aware algorithm can be generalized to grids which are too
large to fit entire rows into cache. In this case, a multidimensional approach
is necessary when dropping rows and columns from the subdomains. In each
of the three pictures below, computation occurs in the smallest subdomain
only (the outer parts represent the buffers that have been added). The buffers
grow by one line in each of x and y each iteration.

First iteration Second iteration Third iteration

While computing in neighboring subdomains, the rest of the updates are
done carefully in order to maintain bitwise identical updates. In the current
subdomain, the calculation is done using the natural ordering. In the trailing
subdomain, the calculation is done in the opposite order. In the three pictures
below, the shrinking subdomain on the left is the trailing subdomain.
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Algorithm Cache-GSRedBlack
1. Do j = 1, N, `.

1a. Set j1 = min(j + `− 1,N).
1b. Do it = 0,m− 1

1b1. Do i = j, j1 − 2 ∗ it
1b1a. Update(i, red).
1b1b. Update(i− 1, black).

1b2. Do i = j − 1, j −m+ 2 ∗ it,−2
1b2a. If mod(j,2)= 1 then

1b2a1. UpdateRedBlack(i)
1b2a2. UpdateRedBlack(i− 1)

1b2b. If mod(j,2)= 0 then
1b2b1. UpdateRedBlack(i− 1)
1b2b2. UpdateRedBlack(i)

Figure 4: Once through cache red-black ordered Gauss-Seidel algorithm

2.2 Once through Cache Red-Black Ordered Gauss-Seidel

Red-black ordered Gauss-Seidel is significantly more complex to code in the
once through cache style rather than in the normal style. Let us restrict our
attention to matrices Aj which are based on discretization methods which
are local to only 3 neighboring rows of the grid (e.g., a 5 or a 9 point discre-
tization). For a discussion of a 9 point discretization on this topic, see [9]
and [12].

Figure 4 contains the complete algorithm for passing data through ca-
che only once for the red-black ordered Gauss-Seidel. In §2.1, the naturally
ordered Gauss-Seidel was shown geometrically to be similar to a domain de-
composition method where the size of the subdomains shrank each iteration
(forming an increasingly larger buffer each iterations). For the red-black or-
dered Gauss-Seidel, the buffer is saw tooth shaped on the top and grows each
iteration by points from two grid rows instead of one. On the right side, the
buffer grows each iteration by only one grid column (similar to the naturally
ordered Gauss-Seidel case).
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Figure 5: Simple triangular grid

2.3 Once through Cache ADI
and Line Relaxation Methods

ADI and line relaxation algorithms are easily made cache aware using similar
techniques to the ones given in §§2.1-2.2. One difference is that entire lines of
unknowns must fit in cache at once in order to guarantee bitwise compatibility
with the standard algorithm implementations.

2.4 Once through Cache Relaxation Methods
on Triangular Grids

Triangular grids are also easily made cache aware. The grids must be quasi-
uniform and highly structured and the ordering of Ai must lead to blocks
of diagonal submatrices. A simple example of a suitable grid is given in
Figure 5. A combination of the methods given in §§2.1-2.2 with the nonzero
graph of the Ai’s is used.

Grids that are unstructured, including ones that have been chosen through
an adaptive gridding procedure, require a different approach than is covered
in this paper. §4 briefly discusses an unstructured grid approach.

2.5 Unstructured and Quasi-Structured Grids

Unstructured grids presents a challenge that is not addressed in this paper.
Quasi-unstructured grids (see Figure 6) can frequently be accommodated
using techniques similar to structured grids. In particular, the number of
graph connections in the matrices Ai are usually predictable, just like in the
structured grid case. Both of these cases are considered in [5], [6], and [7].
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Figure 6: Quasi-structured grid.

Algorithm Vcycle( k, {Ai, ui, fi, ri}ki=1 )
1. Do i = 1, 2, · · · , k − 1

1a. Approximately solve Aiui = fi.
1b. Compute a residual ri ← fi −Aiui.
1c. Set fi+1 ← Riri and ui+1 ← 0.

2. Do i = k, k − 1, · · · , 1
2a. Approximately solve Aiui = fi.
2b. If i > 1, then set ui−1 ← ui−1 + Piui.

Figure 7: V cycle definition
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3 Combining Multigrid Components

A typical multigrid method is based on a V cycle multigrid method (see
Figure 7). Implementing a W or F Cycle (or any other correction cycle) is a
trivial extension.

All multigrid correction algorithms are a simple combination of two di-
stinct parts: the pre-correction step and the post-correction step. These are
referred to by McCormick [10] as slash cycles. While both steps may have an
approximate solve step included, the change of level step at the end of each
has quite different cache effects.

There are 3 major operations in the V cycle:

1. Approximate solves: steps 1a and 2a. This is typically a relaxation
method for simple problems, but can be any iterative method.

2. Restriction of residuals: steps 1b and 1c. This is typically a weighted
average of nearby residuals. It is used to compute a residual correction
problem’s right hand side (represented by the operator Ri) on the next
coarser grid.

3. Prolongation of corrections: step 2b. This is typically a second or fourth
order interpolation method (represented by the operator Pi).

In a typical multigrid code, a V cycle is implemented very similarly to the
description given here. By using a structured language methodology, different
algorithms can be substituted for the default ones trivially.

As was shown in [3], when a grid Ωi gets too large, a change in the al-
gorithm is required which changes the global ordering. In essence, we use a
domain decomposition approach to find disjoint two dimensional subdomains
Ωij whose union is Ωi. Further, the data associated with the Gauss-Seidel
operation on each subdomain must fit entirely in cache. The size of the sub-
domains depends heavily on the number of nonzeroes per row in the matrix
Ai, the sparse matrix storage method, and what iteration of the Gauss-Seidel
iteration we are on. Hence, we really have a set of disjoint subdomains Ω(`)

ij ,
where ` = 1, · · · ,m.

Data passes through cache once almost everywhere each time a level is
reached with this transformation. Due to connections between subdomains,
sometimes a very few points (rather than whole subdomains) have data pass
through cache twice. However, we can do better, as will be described in this
and the next section.
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Algorithm Cache-Vcycle( k, {Ai, ui, fi, ri}ki=1 )
1. Do i = 1, 2, · · · , k − 1

1a. Do ` = 1, 2, · · · ,mi

1a1. Determine Ω(`)
ij .

1a2. For each Ω(`)
ij ,

1a2a. If ` = 1, then ui |Ω(`)
ij

← 0.

1a2b. Do 1 iteration of approximate solve of Aiui = fi.
1a2c. If ` = mi, then compute as much of ri as is possi-

ble.
1a3. If ` = mi, then complete the calculation of ri

and calculate fi+1 = Riri.
2. Do i = k, k − 1, · · · , 1

2a. Do ` = 1, 2, · · · ,mi

2a1. Determine Ω(`)
ij .

2a2. For each Ω(`)
ij ,

2a2a. If ` = 1 and k = 1, then ui |Ω(`)
ij

← 0.

2a2a. If ` = 1 and k > 1, then
ui |Ω(`)

ij

← ui |Ω(`)
ij

+Pi+1ui+1 |Ω(`)
ij

.

2a2c. Do 1 iteration of approximate solve of Aiui = fi.

Figure 8: Cache aware V cycle definition

The computational subdomains Ω(`)
ij must be further refined in order to

use as large of subdomains as possible each iteration of the relaxation algo-
rithm. The last iteration of the relaxation algorithm must be treated diffe-
rently due to the projection or interpolation steps that must be done. As is
noted in [11], only 50-60% of the cache is actually available for use by a given
program. This is a side effect of multitasking operating systems.

Determining the sizes of the Ω(`)
ij ’s per iteration ` can be done as a pre-

processing step and is inexpensive. In order to efficiently do loop unrolling
and/or tiling, we need a small amount of information about the computer
that we are going to use. First, we need to know how big the usable part of
the cache actually is. Knowing the size of usable cache and the number of
points in a line we calculate

• Ω(1)
ij for either a precorrection or a postcorrection step.

• Ω(`)
ij for ` = 2, · · · ,mi − 1.

• Ω(mi)
ij for either a precorrection or a postcorrection step.

The second item we need to know is how many points to unroll in the loops
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s Update

c Can compute residual

sg Can compute projection

s

csg

Figure 9: Five point discretization, point relaxation

s Update

c Can compute residual

sg Can compute projection

s

c

sg

Figure 10: Nine point discretization, point relaxation

in the Update and UpdateRedBlack code.
Three steps occur during the pre-correction step: smoothing, residual

calculation, and projection. Two sets of computational subdomains Ω(`)
ij are

necessary. One is for when just the relaxation method is used as a smoother
and the other is when all three components are used at once.

There is a scheduling issue when implementing cache aware multigrid
algorithms. Figures 9-11 graphically show when the residual can be computed
based on the last update in the relaxation method. Where a projection can
be centered is also shown based on which residuals have been computed.
Figure 12 shows when interpolation to the next finer level can be scheduled.
What is expressed is simply a “compute as soon as you can” principal.

For simplicity, point relaxation methods should probably be written assu-
ming a nine point operator (see Figure 11). In order to write highly efficient
code with no special cases, two extra “ghost” rows and columns are needed in

s Update

c Can compute residual

sg Can compute projection

s s s s s

c c c c c

s s s s sg g g g g

Figure 11: Five or nine point discretization, line relaxation
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s Update

× Can compute interpolants on finer
grid

s

×
×

×
×

Figure 12: Five or nine point discretization, interpolation

the computational grids. Values there are set to zero and no relaxation upda-
tes occur (requiring a minor post processing). While for tiny grids this adds
a significant amount of storage, we are only interested in problems that are
much larger than would fit in the cache. Hence, the padding on the coarser
grids only amounts to a trivial increase in the overall storage requirements
(and is useful for parallel computing versions of the algorithms).

Two steps occur in the post-correction step: smoothing and interpolation.
In order for this half of a correction scheme to be optimally cache aware, the
last step must use a somewhat smaller Ω(mi)

ij than the rest of the iterations.
This is because the interpolant on level i+ 1 is added to much larger vector,
which is typically four times the size of the vector on level i.

4 Numerical Results and Conclusions

In [5], [6], and [7] a collection of problems are solved on structured grids (2D
and 3D) and unstructured grids (in 2D). Speedups range from 100% to 300%
over using standard, well coded implementations.

Reducing the number of times data passes through cache to the absolute
minimum eliminates one of the major areas where multigrid does not take
full advantage of the hardware that it is implemented on. The algorithms in
this paper show how to reach this minimum.

When using cache aware implementations, there are two issues that must
be faced: is true portability wanted and how much performance is demanded?
By true portability, all that must be determined for a given machine are two
numbers: the number of elements in a cache line and the number of cache
lines that can be guaranteed to be usable.

If ultra high performance is demanded, true portability becomes much
harder. Loop unrolling, relaxation updates along diagonals, specialty BLAS
for short vectors (in machine language), and other machine specific opti-
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mizations are necessary. One interesting aspect is that most RISC based
processors are very similar. Hence, the non-machine language optimizations
will work well on similar processors.

Using cache aware multigrid algorithms requires a different programming
style than is traditional (see [4] and [8]). In order to make the codes viable, a
rigid programming style must be maintained for all components of the code.
This includes a uniform subscripting method for variables, an isolation of
the minimal number of lines of code that is necessary for a give discretized
problem to do major components (e.g., updating a point by the relaxation
method), and a decision on how portable the code will be.

If only true portability is demanded, a general code can be constructed
quite easily for 5-9 point operators Ai (see [4] for example codes). For the
examples in §3, only four quite small pieces of code have to be written as
separate “include” files or macro definitions. Only the interpolation file will
typically have more than one target point to modify.

The ideas in this paper can be applied not just to natural and red-black
ordered Gauss-Seidel, but to SOR variants, line relaxation methods, and ADI.
Applying the ideas to typical parallel smoothers is also a straight forward
extension.
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[8] Douglas, C. C., Hu, J., Rüde, U., and Bittencourt, M, Cache based
multigrid on unstructured two dimensional grids. Notes on Numerical
Fluid Mechanics, 11 pages, Vieweg, Braunschweig, 1999, Proceeding of
the 14th GAMM-Seminar Kiel on ’Concepts of Numerical Software’,
January, 1998.

[9] Hellwagner, H., Weiß, C., Stals, L., and Rüde, U., Efficient implementa-
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A Locally Conservative Eulerian-Lagrangian
Method for Flow in a Porous Medium

of a Mixture of Two Components
Having Different Densities

Jim Douglas, Jr. Felipe Pereira Li-Ming Yeh

Abstract

The object of this paper is to develop an efficient, conservative,
Eulerian-Lagrangian numerical method for the differential system de-
scribing miscible displacement of one incompressible fluid by another
of different density in a porous medium. The method will be a variant
of the “Locally Conservative Eulerian-Lagrangian Method” that has
been studied for immiscible displacement.

KEYWORDS: LCELM, MMOC, MMOCAA

1 Introduction

There have been many discussions of numerical methods for the simulation
of miscible displacement in porous media over the past two decades; see, e.g.,
[2, 10, 13, 14, 15, 17, 18, 27, 28, 29, 30, 34, 36, 37]. However, almost all of
this work has been related to a model for miscible flow that is consistent with
the conservation of momentum only if the two components in a binary mix-
ture have equal densities [20]. The object here is to treat the more realistic
and complex system [20] that properly describes the flow of a binary mixture
when the components are allowed to have significantly different densities; in
particular, the numerical approximation of this system will be addressed by
an efficient and locally conservative Eulerian-Lagrangian method (LCELM)
that takes into account the dominance of transport over diffusion in the phy-
sics. Our method is based on an LCELM treatment of immiscible displace-
ment [24]; a somewhat similar locally conservative method was analyzed by
Arbogast and Wheeler [3] for linear problems; they and Chilikapati [2] had
applied their method to the older miscible displacement model, though not
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without some difficulties. It is clear from the title of [3] that their derivation
of their method was based on different concepts from those underlying our
derivation.

The authors consider the LCELM in [24] and in this paper to be a natural
development in the family of modified method of characteristics (MMOC)
procedures originally introduced by Douglas and Russell [25] and applied
first by Russell [36, 37] and then by many others to (equal density) mis-
cible displacement and to immiscible displacement [13, 14, 26, 27, 28, 29].
The MMOC has several, by now well-known, advantages (including, in par-
ticular, computational efficiency) and one fundamental flaw, which in the
miscible displacement problem is the failure to preserve as an algebraic iden-
tity the total masses of the two components, an important physical require-
ment. Recently, for the immiscible displacement problem, Douglas, Furtado,
and Pereira [19] formulated a variant of the MMOC called the modified
method of characteristics with adjusted advection (MMOCAA) which does
conserve the component masses globally and also preserves the conceptual
and computational advantages of the MMOC; however, it does not neces-
sarily conserve the component masses locally. There is a collection of finite
element methods, called generically ELLAM , that can address conservation
problems locally, though not all implementations of these methods do exhi-
bit local conservation; see [2, 4, 8, 9, 31]. We believe that ELLAM methods
have not been applied to the system for miscible flow with differing densities.
The cost of ELLAM procedures appears to be significantly greater than for
the MMOCAA procedure or the LCELM technique to be described in this
paper.

As mentioned above, an LCELM procedure has been described in detail
by the authors in [24] for approximating the solution of immiscible displa-
cement in porous media; the experimental evidence reported in [24] clearly
indicates the superiority of the LCELM over either the MMOC or the
MMOCAA. A convergence proof for a simpler application of the LCELM

concept has been obtained by Douglas and Huang [21]. There is a fundamen-
tal distinction between the various MMOC procedures and LCELM tech-
niques. All MMOC schemes relate to approximating transport-dominated
parabolic problems beginning from nondivergence forms of the equations;
LCELM schemes are derived from the divergence forms of the equations. It
is the use of the divergence form of a parabolic equation that allows relatively
easy localization of desired conservation principles in a form amenable to the
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application of finite element or finite difference methods. Both MMOC and
LCELM procedures are properly viewed as operator-splitting techniques,
with the transport being separated from the diffusion in the parabolic equa-
tion. The two families of methods treat the diffusive part of a time step in
like manner; the difference lies in the treatment of the transport. In MMOC

procedures, certain characteristics are traced back from the advanced time
level to the previous level; normally, these characteristics are associated with
node points for finite differences or quadrature points for finite elements.
The trace-backs arising in LCELM procedures lead to predecessor sets, not
predecessor points. In the immiscible displacement problem, the integral
curves that generate the predecessor sets are not the characteristics of the
first-order transport operator coming from the nondivergence form of the sa-
turation equation; for the miscible displacement problem the relevant integral
curves do coincide with characteristics of the first-order transport operator,
though they are usually associated with points that would not be employed
in MMOC schemes.

2 Unequal Density Miscible Displacement

A model [20] for unequal-density miscible displacement can be described as
follows. The model assumes that the components are incompressible and that
there is no change in volume resulting from the mixing of the components;
i.e., the volume of the mixture is the sum of the partial volumes. Let ρα and
ρβ denote the densities of the αth and βth pure components in the binary
mixture and assume that ρα > ρβ . Set

σ = (ρα − ρβ)/ρβ .

Let c = cα = 1 − cβ ; then the density of the mixture is given by

ρ = ρ(c) = ρβ(1 + σc).

Denote the pressure by p and the Darcy velocity by u. The pressure equation
is given by the equations

∇ ·
(

u +
σ

1 + σc
D(u)∇c

)
= q, x ∈ Ω,

u = − 1
µ(c)

k(x) (∇p − ρ(c)g∇d) , x ∈ Ω,
(2.1)
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where D(u) is the dispersion tensor given by

D(u) = φ(x)
(
dmolI + |u|(dlongE(u) + dtransE

⊥(u))
)
, (2.2)

φ(x) is the porosity of the medium, dmol is the (small) molecular diffusion co-
efficient, dlong and dtrans are the longitudinal and transverse dispersion coeffi-
cients, E(u) is the projection along the Darcy velocity, and E⊥(u) = I−E(u)
is its orthogonal compliment. Also, q is the total external flow rate, with q > 0
denoting injection and q < 0 production; k(x) is the permeability tensor; µ(c)
is the viscosity, frequently quite strongly dependent on the concentration; g

is the gravitational constant and, finally, d(x) is the depth function in the
reservoir Ω. For simplicity, a “no physical transport” boundary condition

u · ν = 0, x ∈ ∂Ω, (2.3)

will be assumed; then, compatibility to incompressibility requires that∫
Ω

q(x, t) dx = 0, ∀t.

The concentration equation, in divergence form, is given by

φ
∂c

∂t
+ ∇ ·

(
cu − 1

1 + σc
D(u)∇c

)
= c̃q, x ∈ Ω, (2.4)

where c̃ is the concentration in the fluid in the external source;

c̃(x, t) =

{
c̃(x, t), a specified function, if q > 0,

c(x, t), the resident concentration, if q < 0.
(2.5)

A “no diffusive transport” boundary condition will be assumed for the con-
centration, and an initial concentration must be specified:

(D∇c) · ν = 0, x ∈ ∂Ω, (2.6)

and
c(x, 0) = cinit(x), x ∈ Ω. (2.7)

The model above reduces to the older model if σ = 0; i.e., when the two
components have equal densities.

Recall [20] that the Darcy flux u is a mass-averaged flux, not the volu-
metric flow rate. It is very convenient to introduce the volumetric flow rate;
let

w = u +
σ

1 + σc
D(u)∇c. (2.8)
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Note that it follows from the two boundary conditions (2.3) and (2.6) that

w · ν = 0, x ∈ ∂Ω. (2.9)

A small amount of manipulation shows that the concentration equation can
be rewritten in the form

∇t,x ·
(

φc

cw

)
− ∇x · (D∇xc) = c̃q = c̃q+ − cq−. (2.10)

It is also convenient to write (2.10) in mixed form by introducing a concen-
tration flux; let

z = −D(u)∇xc. (2.11)

Then, the concentration equation takes the mixed form

∇t,x ·
(

φc

cw

)
+ ∇x · z = c̃q+ − cq−, x ∈ Ω,

z + D(u)∇xc = 0, x ∈ Ω.

(2.12)

If the pressure equation is written in terms of w and p and the concentra-
tion flux z is used to replace D∇c in the equation, then the pressure equation
can be seen to be given, also in mixed form, by

µ(c)k(x)−1w + ∇xp = ρ(c)g∇xd − σµ(c)
1 + σc

k(x)−1z, x ∈ Ω,

∇x · w = q, x ∈ Ω,

u = w +
σ

1 + σc
z, x ∈ Ω.

(2.13)

The boundary conditions are expressed by the relations

z · ν = w · ν = 0, x ∈ ∂Ω. (2.14)

The introduction of the volumetric flux w will allow the system to be
treated in a manner that closely resembles the way the older model has been
approximated; in particular, we shall be able to use essentially the same
operator splitting for the new system as for the old. If w had not been
introduced, it is not clear that the pressure and concentration equations
could be effectively separated as they are in the procedure described below.
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3 The Basic Operator Splitting Algorithm

Assume that we shall approximate both {w, p} and {z, c} in the lowest index
Raviart-Thomas mixed finite element space RT = V × W [35] over the same
partition {Ωj}. (There is no logical constraint that the partitions for the
pressure and concentration be the same; in fact, we shall introduce a local
refinement in the pressure partition in order to obtain a better approximation
of a point source or sink. There can be other advantages to the use of different
partitions for the two equations; see [16, 17, 18].) Let

∆tp = i1∆tc = i1i2∆tct, (3.1)

where i1 and i2 are positive integers; in their numerical experiments the
authors have frequently chosen i1 to be one or two and i2 to be about ten.
Set

tm = m∆tp, tn = n∆tc, tn,κ = tn + κ∆tct,

where normally 0 ≤ κ ≤ i2. The pressure equation will be approximated
at time levels tm; the concentration will be approximated through transport
microsteps corresponding to times tn,κ and diffusive steps corresponding to
times tn. We shall indicate a function f evaluated at these times by fm =
f(tm), fn = f(tn), and fn,κ = f(tn,κ); all functions will be assumed single-
valued (i.e., if tm = tn, then fm = fn).

Define an extrapolation operator as follows:

Ef(t) =




f0, 0 < t ≤ t1,
t − tm−1

tm − tm−1 fm − t − tm

tm − tm−1 fm−1, tm < t ≤ tm+1.

Then, the algorithm can be described as follows.

1◦ Given C0 = cinit(x), find {W 0, P 0, U0}, where {W 0, P 0} ∈ RT and

U0 = W 0 +
σ

1 + σC0 Z0.

If cinit vanishes, so that the simulation begins when the injection of the
solvent commences, then Z0 = 0. If cinit is not identically zero, then
the initial pressure problem is nonlinear, since Z0 = −D(U0)∇xC0 is
unknown. A suggestion for working the nonlinear elliptic problem is to
apply the method of continuity to it in the following form. First, set
σ = 0, so that the elliptic problem is linear (and corresponds to the old
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miscible model). Solve for a first approximation U0,0 to U0:(
µ(C0)k−1W 0,0, γ

)− (∇x · γ, P 0,0) =
(
ρ(C0)g∇xd, γ

)
, γ ∈ V,

(∇x · W 0,0, η) = (q, η), η ∈ W,

U0,0 = W 0,0.
(3.2)

Now, let σm = mδσ, where σM = σ. Then, for m = 1, . . . , M , set
Z0,m−1 = −D(U0,m−1)∇xC0 and solve the linear problem(

µ(C0)k−1W 0,m, γ
)− (∇x · γ, P 0,m)

=
(
ρ(C0)g∇xd, γ

)−
(

σµ(C0)
1 + σC0 k−1Z0,m−1, γ

)
, γ ∈ V,

(∇x · W 0,m, η) = (q, η), η ∈ W,

(3.3)

for {W 0,m, P 0,m} and set

U0,m = W 0,m +
σ

1 + σC0 Z0,m−1;

U0,M should give a very good approximation of U0, which should then
be obtainable in a small number of Newton iterations starting from
Z0,M = −D(U0,M )∇xC0.

If C0 is constant, then {W 0, P 0} ∈ RT satisfies (3.2).

2◦ Assume {Um, Wm, Pm, Zm, Cm} known for some m ≥ 0. Then, carry
out a full pressure time step employing the operator-splitting procedure
outlined in 3◦ − 5◦ below.

3◦ Let tm ≤ tn < tm+1. Split the concentration time step (tn, tn+1) into
calculations for transport and diffusion. Associate transport with the
system

∇t,x ·
(

φc

cw

)
= c̃q+ − cq−, x ∈ Ω,

w · ν = 0, x ∈ ∂Ω,

(3.4)

and apply the LCELM transport microstepping procedure (to be de-
tailed below in §5) over the microsteps (tn,κ−1, tn,κ), κ = 1, . . . , i2, so
that tn,i2 = tn+1, to obtain the transport-approximation Cn+1 ∈ W.

4◦ Given Cn+1, complete the concentration time step by approximating
the solution of the diffusive system

φ
Cn+1 − Cn+1

∆tc
− ∇x · (D((EU)n+1)∇xCn+1) = 0, x ∈ Ω,

(D((EU)n+1)∇xCn+1) · ν = 0, x ∈ ∂Ω;
(3.5)
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i.e., find {Zn+1, Cn+1} ∈ RT such that
(
D((EU)n+1)−1Zn+1, γ

)− (∇x · γ, Cn+1) = 0, γ ∈ V,
(

φ
Cn+1 − Cn+1

∆tc
, η

)
+ (∇x · Zn+1, η) = 0, η ∈ W.

(3.6)

If tn+1 = tm+1, set {Zm+1, Cm+1} = {Zn+1, Cn+1}.

5◦ Given {Zm+1, Cm+1}, find {Wm+1, Pm+1} ∈ RT such that
(
µ(Cm+1)k−1Wm+1, γ

)− (∇x · γ, Pm+1)

=
(
ρ(Cm+1)g∇xd, γ

)−
(

σµ(Cm+1)
1 + σCm+1 k−1Zm+1, γ

)
, γ ∈ V,

(∇x · Wm+1, η) = (q, η), η ∈ W,
(3.7)

and set
Um+1 = Wm+1 +

σ

1 + σCm+1 Zm+1. (3.8)

6◦ Repeat pressure time steps to the desired final time.

The partial differential system is nonlinear, since the concentration ent-
ers the pressure equation nonlinearly through the viscosity and the term
including the concentration flux, which in turn involves the dispersion tensor
D(U). The dispersion tensor’s appearance in the concentration equation is
another nonlinearity in the system. However, the operator-splitting proce-
dure outlined above produces a numerical method that is linear in every part,
with the exception that a nontrivial initial concentration can induce a single
nonlinear elliptic problem for the initial pressure distribution.

4 Discretization of the Pressure Equation

The LCELM procedure to be employed herein is based on that introduced
by the authors [24] to treat immiscible displacement in porous media. It was
assumed above that the solutions of the pressure and concentration equations
are being approximated in Raviart-Thomas spaces RT of lowest index over
the same rectangular partition (in two or three spatial dimensions). Conse-
quently, the pressure and the concentration variables are approximated by
piecewise constant functions, while each component of the fluxes W and Z is
approximated on each element by a function that is linear in the correspon-
ding component of the space variable and is constant in the other components
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of the space variable. In the model for miscible displacement being conside-
red in this paper, the Darcy velocity u plays a secondary rôle to the flux
w, in that w is the natural choice for the flux in the pressure equation and
is the velocity variable appearing in the transport part of the concentration
equation. If the external flow is restricted to a few elements (as is usual
in practice), then in almost all of the domain w will be approximated in a
discrete divergence-free manner by the mixed method flux variable W . In
the LCELM procedure that will be used to approximate transport in the
concentration equation, it will be necessary to evaluate W (or, more preci-
sely, EW ) at the vertices of the elements; however, W , as produced by (3.7),
is discontinuous at vertices, and some averaging or interpolation procedure
must be applied at such points. It was observed in [24] that it is strongly
advisable to devise an evaluation at vertices that preserves the divergence-
free nature of the approximation in the neighborhood of these points. The
method used in [24] and that will be repeated here is to define a bilinear or
trilinear interpolation W̃ of element-center values of W . It can be seen by
a short calculation that, if q = 0 on all of the elements having a point x as
vertex, W̃ is divergence free on boxes centered at x and contained in these
elements. The extrapolation of W̃ remains divergence free in this sense and
will be employed in the transport calculation.

An alternative to the interpolation would be to offset the pressure par-
tition from that for the concentration. If the element centers for the con-
centration partition are taken as the vertices of the (rectangular) elements
in the pressure partition, then the flux W would be continuous at the verti-
ces of the concentration partition and W would be discrete divergence free
about vertices in pressure elements where q = 0. On the other hand, D(U)
would be discontinuous in concentration elements, which would complicate
the diffusive part of a concentration time step.

5 Transport Microsteps
by an LCELM Technique

Let us derive the local conservation law that will provide the basis for our
LCELM approach to the miscible problem. Recall the transport equation

∇t,x ·
(

φc

cw

)
= c̃q+ − cq−, x ∈ Ω,

w · ν = 0, x ∈ ∂Ω,

(5.1)
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Following [24], we consider the space-time slice Q = Ω× [tn,κ, tn,κ+1]. Let
K be a reasonably shaped, simply-connected subset of Ω, and define a subset
D = Dn,κ(K) of Q as follows. For each x ∈ ∂K, construct the solution y(x; t)
of the final value problem

dy

dt
=

cw

φc
=

w

φ
, tn,κ+1 > t ≥ tn,κ,

y(x; tn,κ+1) = x,
(5.2)

and set

xn,κ(x) = y(x; tn,κ). (5.3)

Then, let K = Kn,κ be the interior of the set {xn,κ(x) : x ∈ ∂K}, and let
D be the tube determined by K, K, and the integral curves (5.2). (For ∆tct

sufficiently small, the map x → xn,κ is one-to-one, so that this construction
can be carried out.) Now, denote the outward normal to ∂D by ϑ(x, t) and
note that it is orthogonal to the vector (φc, cw)t on the lateral surface of D.
Then, integrate (5.1) over D:

∫
D ∇t,x ·

(
φc
cw

)
dx dt =

∫
∂D

(
φc
cw

)
· ϑ dA

=
∫

K φcn,κ+1 dx − ∫K φcn,κ dx

=
∫

D (c̃q+ − cq−) dx dt.

(5.4)

Thus, mass is conserved locally in the transport step if
∫

K
φcn,κ+1 dx =

∫
K

φcn,κ dx +
∫

D

(
c̃q+ − cq−) dx dt. (5.5)

The no-flow boundary condition is handled in a natural way in (5.4), since
the integral curves (5.2) do not exit Ω in this case. In fact, if x ∈ ∂Ω, then
the integral curve remains in ∂Ω and D has a portion of its lateral surface
contained in ∂Ω × [tn,κ, tn,κ+1]. Hence, no special cases arise for subsets K
close to the boundary for these boundary conditions.

Before proceeding to the discretization of (5.5), let us discuss the relations
between (5.5) and the corresponding conservation law for immiscible displa-
cement and that employed in [2] for the older miscible displacement model.
It is easy to see that the nondivergence form of the concentration equation
is given by

φ
∂c

∂t
+ w · ∇xc − ∇x · (D(u)∇xc) = (c̃ − c)q+. (5.6)
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Thus, the integral curves determined by (5.2) coincide with the characteristics
of the first order part of (5.6), whereas in the immiscible problem treated in
[24] they do not. In the miscible displacement model treated by Arbogast,
Chilipataki, and Wheeler [2] and in the paper by Arbogast and Wheeler
[3] on linear convection-diffusion equations, our volumetric flow rate w is
replaced by the Darcy velocity u, which is the volumetric flow rate of the
incompressible mixture when σ = 0. Thus, the tubes D represent, both for
them and for us, actual flow tubes, with the consequence that the volume of
K must equal that of K in the absence of external flow. This seems to have
introduced some difficulties in their calculations, which we believe (on the
basis of our experience with the immiscible displacement problem [24] and
that reported in [1] for the older miscible model) to be related to the way
they evaluated u at the vertices of their elements. The constraint itself does
not arise in the immiscible problem.

Now, let us turn to the discretization of the conservation law (5.5). It
was seen in [24] that an acceptable choice for choosing the sets {K} for
conservation is to use exactly the concentration partition, and we shall make
this choice here. So, let K = Ωj for some j. We shall define K as the
box obtained as follows. First, approximate the integral curves (5.2) at the
vertices of K. Since the microstep ∆tct is usually small (i.e., i2 = 10 or so)
with respect to ∆tc, we shall assume that it suffices to follow the tangent to
the integral curve through each vertex of K back to the time level tn,κ, using
(EW̃ )n,κ+1 as defined above. Thus, if x is a vertex of K, then its predecessor
point xn,κ(x) is given by

xn,κ(x) = x − (EW̃ )n,κ+1(x)∆tct

/
φ(x). (5.7)

If Ω is two-dimensional, then for sufficiently small ∆tct, the four points
xn,κ(K) form the vertices of a quadrilateral, K = Kn,κ, which intersects
at most nine elements. (In theory, we could take steps long enough that the
predecessor set would intersect elements other than the immediate neighbors
of Ωj , but it is our intention to treat very inhomogeneous media, for which
the longer microsteps would lead to rather inaccurate simulations, at least
if K is defined using only the vertices of K.) If Ω lies in three-space, the
eight points xn,κ determine a box with ruled, almost quadrilateral surfaces
for faces. The common face of two adjacent elements Ωi and Ωj is mapped
to a common face between the corresponding predecessor sets. Denote the
tube generated by K and K by D = Dn,κ(K).
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Next, we must discretize the conservation relation (5.5) as nearly exactly
as we can. First, given the uncertainties of real reservoir data, it suffices
to assume that the porosity φ is constant on each element of the partition
{Ωj}. Then, the integral over K can be computed exactly. If Ω is two-
dimensional, an algorithm for computing the integral over K was given in
§10 of [24]. The argument for approximating the integral over the tube D
by a trapezoidal rule in time given in §7 of [24] is independent of dimension.
The remaining question is how to approximate almost exactly the integral
over K in the three-dimensional case. Perhaps the simplest suggestion is to
compute the coordinates of the image of the center of each face of K under
the map specified above and to approximate the image of a face of K by the
four triangles determined by the images of the vertices and center of the face.
Then, an algorithm generalizing that of §10 in [24] in the two-dimensional
case can be written down and applied. Now, assuming that each integral in
(5.5) can be evaluated exactly or to high precision, let us replace (5.5) by the
approximation

∫
K φCn,κ+1 dx=

∫
K φCn,κ dx +

∆tct

2

∫
K

(C̃n,κ+1q
+ − Cn,κ+1q

−) dx

+
∆tct

2

∫
Kn,κ

(C̃n,κq+ − Cn,κq−) dx, κ = 0, . . . , i2 − 1,

where
Cn,0 = Cn, x ∈ Ω.

Let |K| denote the volume of K. Then, Cn,κ+1 = Cj,n,κ+1 = Cn,κ+1(Ωj)
satisfies the local, linear equation
(

φ|K| +
∆tct

2

∫
K

q− dx

)
Cn,κ+1 =

∫
Kn,κ

φCn,κ dx +
∆tct

2

∫
K

C̃n,κ+1q
+ dx

+
∆tct

2

∫
Kn,κ

(
C̃n,κq+ − Cn,κq−

)
dx, κ = 0, . . . , i2 − 1.

(5.8)
The transport part of the concentration time step is completed by setting

Cn+1 = Cn,i2 , x ∈ Ω. (5.9)

The diffusive part of the concentration time step has been adequately
defined by equations (3.6) above. Thus, the complete concentration time step
has been specified. And, since the pressure time step has been determined
by (3.7) and (3.8), the entire computational algorithm has been specified.
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Figure 1: Comparison of LCELM simulations of a homogeneous reservoir using
128, 256, and 512 elements at 50, 250, 450, 650 days. Refinement produces a
sharper front.

6 Numerical Experiments

Viscosity µα = .5 cP µβ = 10 cP
Density ρα = 1 g/ cm 3 ρβ = .7 g/ cm 3

Porosity φ = .2
Absolute permeability k = 2 mdarcy

Viscosity function µ(c) = µβ

(
1 + c((

µβ

µα
)0.25 − 1)

)−4

Here, we present numerical results to show convergence of the LCELM

method. Assume the reservoir to be 256m×256 m. Inject fluid (with c̃n = 1)
uniformly along the left edge of the reservoir and let the (total) production
rate be uniform along the right edge; no flow is allowed along the top and
bottom edges of the reservoir as they appear in the graphics. Gravity will
be neglected. The injection rate is taken to be one pore–volume every five
years, and data below are held fixed for the computational results discussed
here.
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Figure 1 shows a mesh refinement study for a homogeneous reservoir (cor-
responding to a one-dimensional problem). Three different discretizations,
with h = hx = 2m, 1 m, and .5 m, were used for the LCELM simulation.
The concentration c obtained for the three grid sizes are almost the same,
indicating convergence for the concentration. Figure 2 is a mesh refinement
study for a heterogeneous reservoir at 200 and 300 days; the permeability for
this test was defined on a 64 × 64 grid. In this case, three different discre-
tizations (64× 64, 128× 128, 256× 256 grids) were again used. It is observed
that flow patterns from the three different grids are almost the same; if the
mesh size is smaller, the concentration front is sharper.
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Validation of Non-darcy Well Models Using
Direct Numerical Simulation
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Abstract

We describe discrete well models for 2-D non-Darcy fluid flow in
anisotropic porous media. Attention is mostly paid to the well models
and simplified calibration procedures for the control volume mixed fi-
nite element methods, including the case of highly distorted grids.

KEYWORDS: well models, non-Darcy flows, anisotropy, distorted grids

1 Introduction

Flow around high production rate gas wells deviates from Darcy’s law. This
phenomenon has been successfully modeled by the two-term Forchheimer
law [7].

In reservoir simulation, the discrete well model is a relation between the
production/injection rate of the well, the well-block pressure and the bottom-
hole pressure. This relation is specific to the basic approximation scheme
used for discretizing the governing equations. Such well models are well un-
derstood in the case of Darcy flow and are mostly based on various generaliza-
tions of the effective radius concept [1, 10]. In the case of Forchheimer flow in
isotropic media, we find the effective radius as a function of the dimensionless
Forchheimer number using the invariant behavior of discrete solutions near
the well blocks. Such invariant properties are analyzed in [6] and are assessed
numerically by solving a set of auxiliary problems which reproduce the known
analytical solutions around a single isolated well in an infinite domain. Our
numerical experiments show that this calibration procedure is very accurate
and can also be applied on non-uniform and highly distorted grids.

In the general case of anisotropic media, there is no consensus on a spe-
cific formulation of Forchheimer’s law that is backed by experiments or from
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first principles. In this work, we derive well models only for the simplest for-
mulation [9], which provides reasonably good fit to pore network simulation
results such as those obtained by Thauvin and Mohanty [14].

In this case direct numerical simulation becomes a critical tool for esti-
mating the validity of a specific well model. Such verification requires much
higher accuracy compared to conventional reservoir simulation techniques
and imposes strict requirements on the quality of the approximation scheme.
To this end we have developed a modification of the control volume mixed fi-
nite element (CVMFE) scheme [4] based on quadrilateral grids in 2-D and on
hexahedral grids in 3-D. This scheme is conservative, nearly optimal among
second order schemes, and naturally incorporates harmonic averaging of re-
servoir properties. Moreover it allows us to obtain reliable results on highly
distorted grids and even on grids that are “degenerate” in the conventional
finite element sense (for example on grids with non-convex cells in the plane.)

Numerical experiments in the 2-D case show that very fine grids are ne-
cessary in order to obtain grid independent results using direct simulation.
Such grids may be impractical in the 3-D case, especially in the case of devia-
ted wells. Hence there is a need for high order methods suitable for accurate
resolution of the flow in the near-well region using coarse grids.

2 Problem Formulation
and Governing Equations

The governing equations that describe steady-state, single-component, single
phase, isothermal flow in porous media are

∇ · (ρu) = f, µK−1u + ρβ|u|u + ∇p = 0, (2.1)

where ρ denotes the fluid density, u the velocity vector, µ the dynamic visco-
sity and p the pressure. The porous medium is characterized by the permea-
bility tensor K, the porosity φ and the Forchheimer coefficient β, which can
be a tensor in some formulations. The right hand side f is associated with
the presence of wells-localized mass inflows or outflows in the reservoir.

Different Forchheimer law formulations are available for the anisotropic
case. Thauvin and Mohanty, [14], require that β = {bij} in order to fit their
network simulation results. Knupp and Lage [9] have suggested an anisotropic
formulation using a variational approach. Their formulation can be written
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as follows

µK−1u + βρ
(u ·K−1u)

1
2

(detK−1)
3
2n

K−1u + ∇p = 0, n = 2, 3, β is scalar, (2.2)

where n = 2, 3 is the space dimension. This model has fewer degrees of
freedom as compared to (2.1). Nevertheless, it provides a good fit to the
data from [14]. However, these data are still not enough in order to choose a
particular tensorial model.

3 CVMFE on Distorted Quadrilateral Grids

In order to describe the discrete approximation to system (2.1) on quadrilate-
ral grids for each element we introduce the mapping r = r(ξ1, ξ2) which maps
the unit square on the quadrilateral in physical coordinates r = (x1, x2)T and
associated metric entities

gi =
∂r
∂ξi

, S = {sij}, sij =
∂xi

∂ξj
, J = detS, gT

j gi = Jδij ,

where gi,gi are the covariant and scaled contravariant basis vectors and J is
the Jacobian of the mapping. Using above notations the governing equations
can be written as follows:

n∑
i=1

∂

∂ξi
ρV i = Jf, (3.1)

n∑
j=1

1
J

gT
i

(
µI + βρ

(u ·K−1u)
1
2

(detK−1)
3
2n

)
K−1gjV

j +
∂

∂ξi
p = 0 (3.2)

V i = uT gi, u =
1
J

n∑
i=1

giV
i (Piola mapping).
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Figure 1: Support for the edge-centered flux base φφe (left) and for the flux test

function ψψe (right).
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The Control Volume Mixed Finite Element methods (CVMFE) as intro-
duced in [4] are based on the lowest order Raviart-Thomas (RT0) flux basis
functions and cell-based pressures. Equation (3.1) is integrated over the grid
cell in the parametric space with mid-point quadrature rules for the contour
integrals. The Forchheimer law (3.2) is integrated over the edge-centered con-
trol volumes in the parametric space and mid-point rules are used for pressure
contour integrals. This derivation is equivalent to using the Raviart-Thomas
flux-pressure bases, piecewise-constant pressure test functions and flux test
functions ψψe defined by (3.3), which is illustrated on Fig. 1 for the cases when
the edge e locally coincides with the vector g2.

φφe =




(1 − ξ1) 1
J g1 in cright(e)

ξ1
1
J g1 in cleft(e)

0 elsewhere
ψψe =




1
J g1 in cright(e)
1
J g1 in cleft(e)

0 elsewhere
(3.3)
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1/4

1/8

1/8

Figure 2: Equivalent first order quadrature rules and distorted grid cells.

In [4] the value 1
J is in fact approximated by a constant in each half-cell

which allows the integrals over cells to be computed exactly. The basic advan-
tage of CVMFE is the observed O(h2) convergence [4] in terms of pressure
and fluxes on highly nonuniform grids and in the presence of strong coeffi-
cient jumps. Moreover it possesses optimal spectral resolution properties in
a whole range of the discrete harmonics and provides accurate solutions on
mildly distorted grids. The main drawbacks of CVMFE are the lack of the
Linear Preservation (LP) property and nonsymmetric discrete metric tensor.

It is possible to derive CVMFE alternatively as a “low order” approxi-
mation to conventional mixed finite element (MFE) method [12]. Thorough



160 Garanzha, Konshin, Lyons, Papavassiliou, and Qin

analysis of relations between finite volume and finite element methods with
different quadrature rules can be found in [2] where it was shown that most
FE methods in primal and dual formulations can be written in the “factori-
zed” form, or as a flux differences in terms of finite volume methods.

In [8] it was shown that there exist quadrature rules for the MFE integrals
with first order algebraic accuracy which result in partial error cancellation
property, namely they result in the discrete system which is identical to that
resulting from RT0 bases and flux test functions defined by (3.3) with certain
first order quadrature rules, which are shown on Fig. 2.

The resulting discrete system coincides with CVMFE [4] on grids with
affine cells, the discrete metric tensor is symmetric positive definite on ad-
missible cells. Moreover the scheme is Linearity Preserving and is more ac-
curate than the original CVMFE on distorted grids. The set of admissible
grids is wider for this scheme as compared to conventional finite elements in
the following sense: the necessary condition for the convergence of discrete
solutions in the case β = 0 in fully discrete norms is that the Jacobian of the
local mapping in the cell edge centers is bounded from below by a positive
constant (see Fig. 2). The convergence proof is similar to that in [13] and the
invertibility of local mapping for each element is not required, i.e., the cell
shown on Fig. 2 (center), is admissible and the local discrete metric tensor is
positive definite and has condition number of the order of unity in this case.
An example of degenerate cell is shown on Fig. 2 (right).

Similar conclusions are valid in the primal formulation, i.e., for the bilinear
finite element method and control volume finite element method.

4 Analytical Estimates for the Equivalent Well-
Block Radius r0 in Isotropic Darcy Flow

In the case of infinite uniform grid with square cells and isotropic Darcy flow
the generic dimensionless discrete system which comprises several well known
approximation schemes can be written as follows:

−(2 + 2w)Pij + w(Pi−1 j + Pi+1 j + Pi j−1 + Pi j+1)

+ 1−w
2 (Pi−1 j−1 + Pi+1 j−1 + Pi−1 j+1 + Pi+1 j+1) =

sQij + (1 − s)
( 36

64Qij + 6
64 (Qi−1 j +Qi+1 j +Qi j−1 +Qi j+1)

+ 1
64 (Qi−1 j−1 +Qi+1 j−1 +Qi−1 j+1 +Qi+1 j+1)

)
,

(4.1)

where i, j are the grid node(cell) indices.
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We seek the solution Pij to (4.1) in the infinite computational domain
−∞ ≤ i, j ≤ +∞ with the following right hand side Q

Q00 = 1, Qij = 0, i2 + j2 > 0. (4.2)

The problem (4.1),(4.2) is closed with the following condition

P00 = 0, lim
r→∞

Pij

r
= 0, r = ∆x

√
i2 + j2, (4.3)

where ∆x is the side of the square grid cell.
The solution to problem (4.1)–(4.3) exists and is unique [1]. Similar to [1]

our objective is to find the value r0 such that the following equality is valid

lim
r→∞(Pij − 1

2π
ln
r0
r

) = 0, r = ∆x
√
i2 + j2. (4.4)

Equation (4.1) leads to some popular schemes, in particular the values s =
1, w = 1 correspond to conventional finite difference scheme (FD), s = 0, w =
1
3 is the bilinear finite element (BFE) scheme, while s = 0, w = 1

2 correspond
to the control volume finite element method (CVFE) and the control volume
mixed finite element method (CVMFE). In the latter case equation (4.1)
is deduced from the extended system by elimination of flux variables. In
order to underline the difference between the single-cell production term and
multiple-cell production term we include the schemes CVFE’ and BFE’ which
are defined by the parameters s = 1, w = 1

2 and s = 1, w = 1
3 , respectively.

Andreev [1] derived the asymptotic expansion for the case s = 1. It can
be generalized for the general case s 6= 1 by adding a constant c,

Pij = c+
1
2π

(ln
∆x
r

− 3
2

ln 2 − γ +
1
2

lnw) +O

(
∆x2

r2

)
, r = ∆x

√
i2 + j2,

where γ = 0.57722156649 . . . is the Euler constant. The value of c for several
approximation schemes was computed in [8] using the analytical solutions
from [1] and superposition principle. Comparing the above equality with
(4.4) we obtain that

r0
∆x

= e−γ− 3
2 ln 2+ 1

2 ln w+2πc,

A simple approximate solution approach for finding r0 was suggested in [10]
using the observation that discrete solution in the near well cells is close to
the analytical solution. Omitting the derivation details we obtain

r0
∆x

= e− π
1+w (s+(1−s) 9

16 )+ 1−w
2(1+w) ln 2.

All results are summarized in Table 1.
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Scheme r0
∆x , exact value exact value r0

∆x , Peaceman error %

BFE (2+
√

3)
5

√
3

16 e−γ+ 3π
32

2
√

6
0.313833 21/4 e−27π/64 0.68

BFE’ e−γ

2
√

6
0.114607 21/4 e−3π/4 1.65

FD e−γ

2
√

2
0.198506 e−π/2 4.72

CVMFE 1
4 e

1
8 (4−8γ+π) 0.3427305 21/6 e−3π/8 0.83

CVFE’ e−γ

4 0.140365 21/6 e−2π/3 1.52

Table 1. Equivalent radius for different numerical schemes and Darcy flow.

5 Calibration Procedure Based
on the Solution of Auxiliary Problem

The equivalent radius does depend on the discrete representation of point
sources/sinks. The most natural discrete approximation to the δ-function is
by the piecewise-constant hat function, which is illustrated in Fig. 3. Rigorous
analysis and convergence proofs for such approximations as applied to the
Darcy law case can be found in [5]. We write the contribution to the right
hand side f in (2.1) from a single well as follows

f =
Q

H
φ(r − r0),

φ(r) =

{
(λ1+λ2)2

4d2λ1λ2
, r ∈ Ωh(K)

0, r /∈ Ωh(K)
, Ωh(K) = {r : |ai · r| < dλi

λ1 + λ2
}.

Here r0 is the well location, H is the height of the perforated zone (fully
penetrating vertical wells are assumed), Q is the mass rate of the well, ai, λi

are the unit eigenvector and eigenvalue of K in the vicinity of the well,
respectively, or

K = AΛAT , A = (a1,a2), Λ = diag(λi), ATA = I,

while d is chosen such that the well block can be placed inside Ωh(K), e.g.,
on square grid d = ∆x.

The reason for this choice of hat function is that it is non-zero in the
square in the transformed coordinates

r′ = Λ− 1
2AT r. (5.1)

This typically results in multiple-cell production terms for a single well and
the estimates for r0 differ from those in [1] and [11] since the superposition
principle should be used for its computation in the linear case.
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well position

compound 
well block

ISOTROPIC PERMEABILITY

NON-SQUARE CELLS

L

L

1/L^2

SQUARE CELLS, ANISOTROPIC
PERMEABILITY

Figure 3: Discrete approximation to the production terms.

The basic motivation for this model of discrete sources and sinks is that
numerical solutions in the vicinity of the well are more accurate compared
to single-cell production term (typically by factor 4 to 7 on the grid with 1:3
aspect ratio shown on Fig. 3.

The well models in the case of isotropic Forchheimer flow are based on
the analytical solution for radial flow around isolated well [3]

p(r) = pR +
µ

kρ

Q

2πH
ln
( r
R

)
+

βQ|Q|
ρ(2πH)2

(
1
R

− 1
r
), (5.2)

Using the assumption that the finite difference solution in the cells near the
well block is close to the analytical solution (5.2), it was shown in [6] that
the local behavior of the discrete solution is described by the dimensionless
Forchheimer number of the well block defined as Fo = βk|Q|

4∆xµH . The equivalent
radius α = r0/δx was found as a solution to the nonlinear equation

π

2
(1 + Fo) = ln(

1
α

) +
2
π
Fo(

1
α

− 1),

In [6] the well model was derived also for the bilinear finite element approxi-
mations, or BFE′ in our notations since single-cell production term was used.
The result looks as follows

p0 = pw +
µ

kρ

Q

2πH
ln
(

rw
α1∆x

)
+

βQ|Q|
ρ(2πH)2

(
1

α2∆x
− 1
rw

),

where p0, pw are the well block pressure and flowing well pressure, respec-
tively, α1 = 2

1
4 e

−3π
4 (see the same value in Table 1), α2 = 8(Γ+

√
2)

4(Γ+
√

2)(1+ 1√
2
)+9π2 ,

and Γ ≈ 1.35 is the empirical calibration constant. The above results have
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provided insight into the problem, however they cannot be used in the case
of irregular and distorted grids. To this end we suggest to find r0 via solution
of small auxiliary system using the following procedure:

WINDOW

BOUNDARY
CONDITIONS

Figure 4.

(a) choose a window around the well block; (b) write
discrete approximation to governing equations in this
window; (c) specify Dirichlet boundary conditions
using the analytical solution (5.2); (d) solve discrete
system, find the pressure in the well block p0 and
find r0 via r0

R = e(p0−pR) 2πHkρ
µQ

Choosing the window size to be 3 × 3 cells results in accuracy which is
comparable to that of the Peaceman method while using well block plus 2
cells in each direction typically allows to obtain 3 to 4 correct digits in r0.

An attractive feature of this simple calibration procedure is that it can
be used in the case of anisotropic permeability using the following analytical
solution to (2.1) and (2.2)

p(r̃) = pR +
µ

(detK)
1
2 ρ

Q

2πH
ln
(
r̃

R

)
+

βQ|Q|
ρ(2πH)2

(
1
R

− 1
r̃
), r̃ =

(rTK−1r)
1
2

(detK−1)
1
4
.

(5.3)
This analytical solution is derived from (5.2) using the transformation of
space variables (5.1). In this case the well model can be written as follows

pw = p0 +
µ

(detK)
1
2 ρ

Q

2πH
ln
(
r̃w
r̃0

)
+

βQ|Q|
ρ(2πH)2

(
1
r̃0

− 1
r̃w

),

where r̃w is the mean well radius computed according to [11].

r̃w =
1
2

(
cond(K)

1
4 + cond(K)− 1

4

)
rw =

rw
2π

2π∫
0

(
(zTK−1z)
(detK−1)

1
2

) 1
2

dφ,

where zT = (cos(φ), sin(φ)). Now the calibration procedure is modified as
follows: (a) fix constants R and pR; (b) solve discretized equations in a “win-
dow” around the well with Dirichlet BC specified by (5.3); (c) find pressure
p0 in the well block and find r̃0 as a solution to nonlinear system (5.3) using
the equality p(r̃0) = p0. It is important that the physical properties for the
calibration procedure should be the same as for the reservoir simulation, i.e.,
the Forchheimer number or its generalizations should be the same in both
cases.
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6 Numerical Experiments

Typical well model validation scenario requires the following stages: a) deri-
vation of the well model; b) numerical experiments with flow around isola-
ted well; c) numerical simulation of 5-spot flow on Cartesian/distorted grids
using well models; d) validation using direct simulation of the 5-spot flow on
extremely refined radial grids near wells. Table 2 shows the comparison of
computed data on 201×201 grid with analytical solutions which clearly shows
that the multiple-cell production terms result in more accurate solutions.

Scheme ||ph − p||L1

||p||L1

, %
||ph − p||L2

||p||L2

, %
||ph − p||C

||p||C , %

BFE 0.0049 0.039 0.41
BFE’ 0.0074 0.164 2.31
FD 0.0060 0.079 0.93

CVFE’ 0.0032 0.054 0.74
CVMFE 0.0026 0.018 0.23

Table 2. Discrete norms of errors for different schemes. (201 × 201 cells)

Injection rate 0.05 mmscf/day
Number of injection wells 4
Injection well coordinates (ft) (0, 0) (200, 0) (0, 200) (200, 200)
Number of production wells 1
Production rate 4×0.05 mmscf
Production well coordinates (ft) (100, 100)
Well radius 0.35ft
Reservoir dimensions 200 ft× 200 ft× 1 ft
Initial pressure, pI 5000 psia
Fluid density 1.783926 ×10−1 g/cm3

Fluid density
at 1atm, 60oF 6.76361 · 10−4 g/cm3

Fluid viscosity 2.5574794 × 10−2 cp
k11, k22(mD) 10,10 or 10,100
k12 = k21 0
Forchheimer coefficient β [ft−1] 0, 1.71 · 1010, 1.71 · 1011

Boundary conditions No-flow at all boundaries

Table 3. Simulation conditions.

Two different sample coarse grid configurations for the same 5-spot flow
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are shown in Fig. 5

WINDOW

-141.00                         -109.50                         -78.00                          -46.50                          -15.00                          16.50                           48.00                           79.50                           111.00                          
-141.00                         

-126.00                         

-111.00                         

-96.00                          

-81.00                          

-66.00                          

-51.00                          

-36.00                          

-21.00                          

-6.00                           

9.00                            

24.00                           

39.00                           

54.00                           

69.00                           

84.00                           

99.00                           

114.00                          

129.00                          

z                               

y                               

Figure 5: Different grids for 5-spot well configuration.

All data for this problem are presented in Table 3.

The well model validation results in the isotropic case for the CVMFE
scheme are presented in Table 4. Production terms and well model are used
on the 11 × 11 Cartesian grid while in direct simulation fluxes through well
boundaries are specified. In this case the bottom-hole pressure pw is the
well model quality indicator. Very fine grids were used for direct simulation,
typical cell size near well was about rw/50.

β p0 − pI r0/∆x pw − pI

pw − pI ,
direct
simulation

err %

0 -121.683 0.342926 -262.149 -262.602 0.17
1.71 · 1010 -132.067 0.35065 -490.176 -490.694 0.11
1.71 · 1011 -225.451 0.37137 -2542.4 -2543.5 0.04
1.71 · 1011 -2560 [6]

Table 4. Comparison of simulation results.

b β p0 − pI r0/∆x pw − pI

pw − pI , di-
rect
simulation

err %

0 1.71 · 1011 -387.46 0.376743 -2543.1 -2543.5 0.01
0.43 1.71 · 1011 -402.745 0.358036 -2543.1 -2543.5 0.01

Table 5. Results for the distorted grid simulations.

The numerical results illustrating the influence of the grid distortion on
the accuracy of the calibration procedure in the isotropic case are presented
in Table 5. Here b∆x is the value of the quasi-random displacement for the
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grid nodes. The initial 23×23 Cartesian grid and the resulting distorted grid
are shown on Fig. 5.

Both grids along with discrete pressure and pressure errors are presented
on Fig. 6. The pressure errors for the 5-spot flow are computed via compa-
rison with very fine grid results.
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Figure 6: Pressure contour maps and error maps for regular and distorted grid

simulations.

The pressure errors are only 3 times larger as compared to the results on
square-cell grids. This is quite good, given that the distorted grid contains a
lot of poorly shaped and non-convex cells.

The well model validation in the anisotropic case is more difficult since
the normal flux distribution through the well boundary is not known. Hence
in direct simulation pw from the well model is specified while the predicted Q
becomes the quality measure. Another observation is that as a rule of thumb
the window around the well in the calibration procedure should be much
larger as compared to the isotropic case for the same well model accuracy.
The preliminary results of simulation on the 47 × 47 grid with square cells
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are presented in Table 6.

β r0/∆x pw − pI exact Q predicted Q err %
1.71 · 1011 0.46 -2072 0.2 0.20015 0.076

Table 6. Validation results for k11 = 10, k22 = 100.

7 Conclusions

Asymptotic methods and the superposition principle allow the derivation
of exact expressions for the equivalent radius r0 for various approximation
schemes on Cartesian grids.

An inexpensive black-box calibration procedure allows r0 to be computed
in general grid configurations for non-Darcy flows, including anisotropic cases.

The CVMFE approximation scheme provides optimal resolution for near-
well flow, including the case of distorted grids. The derivation of CVMFE
via low-order “cancellation” quadrature rules for MFE integrals can improve
accuracy on highly distorted grids and can make the admissible set of grids
in 2-D and 3-D much wider.

Direct simulation of Forchheimer flows is very expensive with high order
approximation schemes being desirable.
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Mathematical Treatment of Diffusion
Processes of Gases and Fluids in Porous Media

Norbert Herrmann

Abstract
The transport of fluids and gases in narrow pore systems is de-

scribed by the transport equation and the material balance equation.
In this paper we start with a typical example of such a process and
develop the underlying parabolic partial differential equation and the
corresponding initial and boundary conditions. Afterwards we describe
how to reformulate the problem into a Fredholm integral equation of
the first kind, which leads to the boundary element method. Whereas
there exists an almost complete approach to the finite difference me-
thod and the finite element method, comparably little is known for the
BEM. We use the collocation method to solve the Fredholm integral
equation of the first kind and present a convergence theorem.

A computer program shows that the the predicted error is in good
agreement with the calculated result.

KEYWORDS: parabolic equation, boundary element method, collocation
method

1 The Physical Problem

For a given gas A the general gas law is well-known:

gas law p · V = n · k · T, (1.1)

where p is the pressure, V the volume, n the number of molecules, k the gas
constant, and T the temperature. The concentration c is defined as

c =
n

V
=

p

kT
. (1.2)

The transport of gases obeys the following equation:

transport equation ~j = −Deff · grad c, (1.3)

where we denote by ~j the flux of the gas and by Deff the (effective) diffusion
coefficient.

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 170–178, 2000.
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A complete description of the gas transport has also to bear in mind the
effect of adsorption a, because for an isothermic process we have

a = f(c), (1.4)

and this function f is normally a nonlinear one. If we would like to include
f , we would get a nonlinear equation. Because we want to explain how
the boundary element method could be applied, we omit the influence of
adsorption (f ≡ 0) to have a linear equation. Later we will show where
linearity is needed.

The change of the concentration c means that there are sinks or sources
in the region. This is mathematically described by the divergence div~j of
the flux. So we get the equation

balance equation
∂c

∂t
= −div~j. (1.5)

Combining (1.3) and (1.5) leads to the following partial differential equation:

∂c

∂t
= div(Deff grad c), (1.6)

which is a parabolic partial differential equation.
At the start of the process we know the concentration from the experiment

which gives us the initial condition

c =
{
ci for t = 0 in the interior,
cR for t = 0 on the boundary. (1.7)

As the first boundary condition we demand that no change of concentration
take place in the centre of symmetry, say the origin:

grad c(0, t) = 0 in the centre of symmetry and for all t. (1.8)

The second boundary condition originates from a balance equation

Deff · grad c = −C · ∂c
∂t

on the boundary for all t, (1.9)

where C is a constant with respect to time and space.
The above consideration can be summarized in the following system of

equations:
∂c
∂t = div (Deffgrad c),

c =

{
ci, for t = 0 in the interior
cR, for t = 0 on the boundary.

grad c(0, t) = 0 in the centre of symmetry and for all t.

Deff · grad c = −C · ∂c∂t on the boundary for all t.
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Two essential difficulties appear in this system:

1. The initial condition is not continuous.

2. The boundary conditions and are both of Neumann type.

2 The Boundary Integral Equation

Let us consider the following model problem:

u̇− ∆u = f in Ω × I,

u(x, t) = g(x, t) on Γ × I,

u(x, 0) = 0 for x ∈ Ω.

In the finite element method (FEM) we transform this model problem into a
weak form by multiplying both sides with a test function v and integrating
over the whole domain Ω. Here we do exactly the same. But since our
problem is time dependent, we need a further integration over the time and
so come to the equation
∫ to

0

∫
Ω
(u̇(x, t)−∆u(x, t)) · v(x, to− t) dx dt =

∫ to

0

∫
Ω
f(x, t)v(x, to− t) dx dt.

In the next step we use the above Green’s formula instead of Green’s formula
in the FEM:∫ to

0

∫
Ω [(u̇(x, t) − ∆u(x, t))v(x, to − t) − u(x, to − t)(v̇(x, t) − ∆v(x, t))] dxdt

=
∫ to
0

∫
Γ

[
u(x, t) · ∂v(x,to−t)

∂n − ∂u(x,t)
∂n · v(x, to − t)

]
dγ dt.

The next step consists in applying an appropriate test function. In the FEM
we use a trial function from a certain Sobolev space, which fulfils the bo-
undary conditions. Here we choose the Green’s function for the (linear)
differential operator u̇ − ∆u, and this is the reason why we are so keen to
have a linear problem. Otherwise, we have a trouble to find a Green function.

The Green function for the operator u̇− ∆ is well-known:

G(x, t) =




1
2
√
πt
e− x2

4t t > 0, x ∈ IR

0 t ≤ 0, x ∈ IR

This function is now used as the test function

v(xo, to − t) := G(xo − x, to − t).
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The most important property of Green’s function is the following identity:

u(xo, to) =
∫ to

0

∫
Ω
u(x, t− to)(Ġ− ∆G) dx dt.

With this formula, we get the following representation formula:

u(xo, to)=
∫ to
0

∫
Ω u(x, t− to)(Ġ− ∆G) dx dt

=
∫ to
0

∫
Γ

[
∂u(x,t)
∂n ·G(xo − x, to − t)

−u(x, t) · ∂G(xo−x,to−t)
∂n

]
dγ dt

+
∫ to
0

∫
Ω f(x, t) ·G(xo − x, to − t) dx dt.

In the theory of integral equations, parts of the right-hand side are well-
known, so

Ko[u](xo, to) :=
∫ to

0

∫
Γ

∂u(x, t)
∂n

·G(xo − x, to − t) dγ dt (2.1)

is called the single layer potential and

K1[u](xo, to) :=
∫ to

0

∫
Γ
u(x, t) · ∂G(xo − x, to − t)

∂n
dγ dt (2.2)

is called the double layer potential. Indeed, if we consider the potential of
a single plate the Gauß law gives exactly (2.1) and the same is true for the
potential of a double layer (2.2).

We summarize a few theoretical results, which can be found in [1].

Theorem 2.1 The single layer potential

Ko : H− 1
2 ,− 1

4 (Γ) → H̃
1, 12
loc (IRn × I)

and the double layer potential

K1 : H
1
2 ,

1
4 (Γ) → H̃1, 12 (Ω, ∂t − ∆)

are both continuous operators.

Theorem 2.2 (Plemelj-Sochozky) Let ψ ∈ H− 1
2 ,− 1

4 (Γ), w ∈ H
1
2 ,

1
4 (Γ),

and γ describe the restriction operator to the boundary Γ. We abbreviate by
[γu] the difference of the boundary values on Γ, when coming from outside
Ωo and from inside Γi:

[γu] := γ(u|Ωo) − γ(u|Ωi).
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Then we have the following jump relations:

[γKoψ] = 0, [γK1w] = w.

Note that the above equation means that the single layer potential does
not jump, but in the double layer potential we have a jump when going from
outside and from inside to the boundary.

3 Neumann Problem of a Diffusion Process

We now apply these theoretical considerations to our model problem. Let
Ω be a bounded convex domain in IR2 and let its boundary Γ = ∂Ω be
sufficiently smooth. Then we consider the following Neumann boundary value
problem:

∂c(x,t)
∂t = Deff · ∆c(x, t), (x, t) ∈ Ω × (0, T ],

c(x, 0) = co(x), x ∈ Ω,

∂c(x,t)
∂n = f(x, t), (x, t) ∈ Γ × (0, T ].

(3.1)

We know from [3] that if Γ = ∂Ω ∈ C2, f continuous, and co ∈ C1 in an
enviroment of Γ, then there exists a unique solution. The Green function is

G(x, t) :=
1

4πDeff t
exp

(
− |x|2

4Deff t

)
.

With this function, we get our representation formula

c(xo, to)= − ∫ t
0

∫
Γ

∂
∂nG(x− xo, t− to) · c(x, t) dγx dt

+
∫ t
0

∫
ΓG(x− xo, t− to) ∂

∂nc(x, t) dγx dt

+
∫
ΩG(x− xo, t) · co(x) dx, xo ∈ Ω, 0 < to < T.

For xo → Γ, we have to observe the jump relation and come to the following
equation which is now valid for xo ∈ Γ:

1
2c(xo, to)= −p.v. ∫ t0 ∫

Γ
∂
∂nG(x− xo, t− to) · c(x, t) dγx dt

+
∫ t
0

∫
ΓG(x− xo, t− to) ∂

∂nc(x, t) dγx dt

+
∫
ΩG(x− xo, t) · co(x) dx, xo ∈ Γ, 0 < to < T.

Now, including the boundary conditions, we are led to an equation which



Mathematical Treatment of Diffusion Processes 175

could be called the mathematical model of our problem:

1
2c(xo, to)+p.v.

∫ t
0

∫
Γ

∂
∂nG(x− xo, t− to) · c(x, t) dγx dt

=
∫ t
0

∫
ΓG(x− xo, t− to) · f(x, t) dγx dt

+
∫
ΩG(x− xo, t) · co(x) dx, xo ∈ Γ, 0 < to < T.

4 The Collocation Method

As a model problem, we consider a ball where our diffusion process should
take place. Because of the symmetry we can restrict our attention to a two
dimensional ball, i.e., a circle, so that the boundary Γ is the circle line shown
below:

xj

xj+1

Γj

Γ′
j

We divide this line into N parts by fixing the points x1, x2, . . . , xN+1 = x1.
We call

Γj := arc (xj , xj+1), Γ′
j := xj , xj+1.

It is not necessary that all the parts are of equal size, but they should be
quasiuniform, i.e., we demand:

max
j

|Γj |/min
j

|Γj | < const.

We introduce the abbreviations

h := max
j

|Γ′
j |, k := T/M, tp = p · k, p = 1, . . . ,M,
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where M is the number of time steps. As the first approximation we consider
the polygon Γ′, formed by Γ1, . . . ,ΓN , instead of the circle line Γ, and solve
the boundary integral on Γ′. In the same way we have to use the inner region
Ω′ of Γ′ instead of Ω. Then we use the ansatz

x̃(x′, t) :=
M∑
p=1

N∑
j=1

cpjΦ
p
j (x

′, t),

where Φ consists of the following functions:

Φpj (x
′, t) = ϕj(x′) · χp(t), x′ ∈ Γ′, t ∈ (0, T ]

with ϕj being the linear spline basis functions on Γ′, j = 1, . . . , N χp the
constant spline basis functions on [0, T ], p = 1, . . . ,M . We define the finite
dimensional ansatz space

V N,M := span 〈Φpj 〉j,p.

Now, our question consists in finding

(cpj )1≤j≤N,1≤p≤M .

such that

1
2c
p
j+p.v.

∫ t
0

∫
Γ′

∂
∂n′G(x′ − xj , t− tp) · c̃(x′, t) dγx′ dt

=
∫ t
0

∫
Γ′ G(x′ − xj , t− tp) · (Phf)(x′, t) dγ′

x dt

+
∫
Ω′ G(x′ − xj , tp) · co(x′) dx′.

This equation looks complicated and indeed it is complicated. It is a simple
system of n·M linear equations with theN ·M unknowns cpj , but the entries of
the system matrix are singular integrals where we have to use their principal
values. On the other hand, this procedure is not as tedious as the application
of the finite element method for solving the boundary integral equation. The
FEM leads to double integrals over the boundary combined with a time
integration.

5 Convergence

Important not only for the theoretical background but also for the nume-
rical approximation is the following result, which states the stability of the
collocation method:



Mathematical Treatment of Diffusion Processes 177

Theorem 5.1 There exists εo > 0 such that, for all grids on Γ× [0, T ], with

εo > ε :=
√
k/h > 0, (5.1)

the coefficient matrix KN is diagonally dominant and we have

‖K−1
N ‖∞ < C,

where the constant C > 0 is independent of h, k, and N .

The restriction (5.1) arises typically in the finite difference method. It
means that we can not refine the space step h without refining the time step.
In the finite difference method this is needed to ensure the stability, and here
we also see that we get stability in that the inverse of the coefficient matrix
is uniformly bounded independent of N .

From the above theorem we conclude the convergence result, which gives
linear convergence of the collocation method, linear in space and time.

Theorem 5.2 Let u be the exact solution of (3.1), uh := Phu (the projection
of u onto V N,M ), and e(x′, t) := uh(x′, t) − u(x, t), x′ ∈ Γ′, t ∈ I. There
exists a positive constant C > 0 such that

‖e‖∞ := max
x′∈Γ′,t∈I

|e(x′, t)| < C · (h+ k).

6 Numerical Results

With the help of a computer program we solve the following problem: Given a
ball of radius one and an oval shown below, we choose u ≡ 1 to be the solution
and adapt the boundary and initial conditions, respectively. Therefore, we
are able to compare the exact solution with the approximate solution and it
is possible to calculate the L∞-norm for their difference. The result is shown
in the figure below. It can be seen that we have indeed a good agreement
with the theoretical result in Theorem 5.2.
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Implementation of a Locally Conservative
Eulerian-Lagrangian Method Applied to

Nuclear Contaminant Transport

Chieh-Sen Huang Anna M. Spagnuolo

Abstract
Recently, in the study of computational geosciences, a new Locally

Conservative Euler-Lagrangian Method (LCELM) [3] was introduced
by Douglas, Pereira, and Yeh. They have shown superior results to
those using the Modified Method of Characteristics (MMOC) and the
Modified Method of Characteristics with Adjust Advection (MMO-
CAA) for the problem of two-phase, immiscible, incompressible flow in
porous media. The object of this paper is to implement the LCELM
applied to the transport of a high-level nuclear decay chain for the pur-
pose of locally conserving the mass of each element in the chain. This
method is coupled with mixed finite elements for the spatial discre-
tization of each concentration equation and for the pressure equation.
Computational results comparing the LCELM, the MMOC, and the
MMOCAA are presented.

KEYWORDS: LCELM, MMOC, MMOCAA

1 Introduction

This work is an extension of the work done in [4], where the modified method
of characteristics (MMOC) and a modified method of characteristics with
adjusted advection (MMOCAA) were applied to approximate a finite number
of concentrations corresponding to elements in a nuclear decay chain. See
[8] for the development and proof of convergence of the MMOCAA in this
miscible displacement problem.

High-level nuclear waste is contained in engineering barriers and then it
is buried. For the purpose of assessing nuclear waste repository sites, we
are interested in tracking the contaminants that might escape containment
and enter saturated groundwater flows. In particular, an important chain,
namely

234U → 230Th → 226Ra,

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 179–189, 2000.
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is considered in [5, 6].

We let Ω denote our domain which represents the reservoir. Let d(x),
x ∈ Ω be the local elevation. Since we are considering contaminants that
have half-lives on the orders of tens of thousands of years, a change in tem-
perature will not affect any of the decay factors. Therefore, we assume that
the phenomena occur at a constant temperature. Furthermore, we assume
that we are dealing with very low concentrations of each contaminant. This
implies that the viscosity µ and the density ρ of the fluid are independent
of the concentrations. Let Nc be the number of contaminants in the decay
chain, and let cα, α = 1, . . . , Nc be the αth element. Furthermore, denote
by q = q(x, t) a macroscopically distributed source term; q is positive at in-
jection points and negative at production points. Let J = (0, T ] be the time
interval of interest.

Recently, a fast, accurate, and stable numerical method [3], the locally
conservative Eulerian-Lagrangian method (LCELM) for transport-dominated
diffusive systems was derived. The LCELM retains the computational effi-
ciency of the MMOC and its variant, the MMOCAA. Moreover, the LCELM
preserves the desired conservation principles locally, while the MMOCAA
conserves them globally, and the MMOC does not at all.

It should be noted that the restriction of the LCELM to miscible flow in
porous media is essentially the same as the characteristics-mixed method in
[1]. The fundamental difference between these new methods and the MMOC
and the MMOCAA is that the new methods consider the partial differential
system in divergence form and then split the transport from the diffusion,
rather than relate to the nondivergence form and make use of the charac-
teristics associated with the first-order transport part of the system in a
fractional step procedure that splits the transport from the diffusive part of
the system. It is the use of the divergence form that allows the localization of
the transport so that the desired conservation property can also be localized.

This paper closely follows the computational ideas in [3]. There, immis-
cible displacement is considered; here, the flow is miscible and there is a
finite number of contaminants to trace, giving a vector concentration. The
LCELM applied to high-level nuclear contaminant transport is an alteration
of the original MMOC and MMOCAA for miscible flow [4] that achieves local
mass conservation of each component in the system. A set of comparisons
showing the MMOC, the MMOCAA, and the LCELM are given for the first
element in the decay chain.
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The organization of the paper is as follows. The flow system is described
in §2. The finite element spaces to be used for the spatial discretization are
introduced in §3. In §4, the problem is discretized in time and the details of
the LCELM procedure are given; in §4.1, the LCELM will be described in
the differential setting, followed by the LCELM transport step in §4.2, the
diffusive step in §4.3, and the pressure calculation in §4.4. Numerical results
are given in §5; comparisons of the MMOCAA, MMOC, and LCELM will be
presented.

2 The Flow System

For α = 1, . . . , Nc, the following equations govern the flow of a high-level
nuclear decay chain through porous media:

u = −(
k

µ
(∇p + ρg∇d)), x ∈ Ω, t ∈ J,

∇ · u = q, x ∈ Ω, t ∈ J,
(2.1a)

∇t,x ·
(

φrαcα

cαu

)
− ∇ · (Dα(u)∇cα)

= −λαrαcα + λα−1rα−1cα−1 + c̃αq, x ∈ Ω, t ∈ J,

cαu · nΩ = (Dα(u)∇cα) · nΩ = 0, x ∈ ∂Ω, t ∈ J,

cα(x, 0) = cα,0(x), x ∈ Ω,

(2.1b)

where λ0 = r0 = c0 = 0 and nΩ is the outward unit normal to Ω. In (2.1a),
p = p(x, t) is the pressure, g is the gravitational constant, k = k(x) is the
permeability of the medium, and φ = φ(x) is the porosity of the medium.
Then, with u = u(x, t) denoting the volumetric flow rate, the first equation
represents Darcy’s law, and the second reflects the incompressibility of the
fluid. For α = 1, . . . , Nc, equations (2.1b) are the mass-balance equations for
the concentration cα of the αth contaminant in a chain that consists of Nc

elements starting with c1. Note that (2.1b) is in divergence form. Let λα,
for α = 1, . . . , Nc be the decay constant of the αth element. Also, since each
species has the potential to adhere to the rock during the flow process, we
denote by rα the retardation factor of the αth contaminant for α = 1, . . . , Nc.
For simplicity, the boundary conditions reflect the assumption that the pe-
riphery of the reservoir is impermeable. Compatibility to incompressibility
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requires that ∫
Ω

q dx = 0. (2.2)

Following [7] for each contaminant, we assume Dα = Dα(φ, u), for α =
1, . . . , Nc, is the dim(Ω)×dim(Ω) matrix,

Dα = φ(x)[dα,molI + |u|(dα,longE(u) + dα,transE
⊥(u))], (2.3)

representing diffusion. In (2.3), dα,mol is the molecular diffusion coefficient,
and dα,long and dα,trans are, respectively, the longitudinal and transverse di-
spersion coefficients for the αth contaminant. The matrix E is the projection
along the direction of flow given by

E(u) = |u|−2[uiuj ], (2.4)

and E⊥ = I − E. Usually, dα,long is considerably larger than dα,trans. The
term c̃α is the specified concentration of the αth contaminant whenever q is
positive, and it is the unknown concentration cα when q is negative. Finally,
the last equation in (2.1b) specifies the initial condition.

3 Spatial Discretization
by Mixed Finite Elements

For simplicity, we do not take gravity into account from this point. Below,
we rewrite the flow equations in terms of flux vectors, because we use mixed
formulations for our space and time discretizations:

∇ · u = q, u = −k

µ
∇p, (3.1)

∇t,x ·
(

φrαcα

cαu

)
+ ∇ · vα = gα, vα = −Dα(u)∇cα, (3.2)

where gα = −λαrαcα+λα−1rα−1cα−1+(c̃α−cα)q+. Our numerical procedure
is developed starting from equations (3.1) and (3.2).

Let
Ω = [0, LX] × [0, LY ],

and set H = {HX, HY }, where HX = LX/NX and HY = LY/NY . Then,
let Xi = iHX and Yj = jHY , and define the elements of the partition T =
T (H) = {Mij : i = 1, . . . , NX, j = 1, . . . , NY } by Mij = [Xi−1, Xi] ×
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[Yj−1, Yj ]; T will serve for both the pressure and the concentration equations.
Let

V = V(H) =
{
~v ∈ H( div , Ω) : ~v |Mij

∈ P1,0 × P0,1 and ~v · ~n = 0 on ∂Ω
}

,

W = W (H) =
{
w : w |Mij

∈ P0
} ⊂ L2(Ω),

where Pk denotes the set of polynomials of total degree k and Pk,` denotes
the tensor product of polynomials of degree k in x by those of degree ` in y.
Then, set

M = M(H) = V × W ;

i.e., the lowest index Raviart-Thomas mixed finite element space over the
partition T .

We shall seek an approximate solution to the system (3.1), (3.2).

4 Discretization in Time

Following [2, 4], we employ a time-discretization procedure based on operator
splitting ideas. To do this, let

∆tp = a1∆td, ∆td = a2∆ttr, (4.1)

where a1 and a2 are positive integers. Let tm = m∆tp and denote by fm

a function f evaluated at time tm. Similarly, let tn = n∆td, fn = f(tn),
fn,κ = f(tn,κ), where tn,κ = tn + κ∆ttr, and fm,n = f(tm,n), where tm,n =
m∆tp + n∆td.

The pressure is approximated at times tm, m = 0, 1, ...,. For each concen-
tration equation, the LCELM procedure is applied. It splits into transport
microsteps and diffusive fractional steps, in which the concentration is com-
puted at times tn,κ and tn, respectively, n = 1, 2, ..., κ = 1, ..., a2. A detailed
algorithm is given in the following subsections.

4.1 The Differential LCELM Procedure

Recall that the concentration equations can be written in the divergence form
as

∇t,x ·
(

φrαcα

cαu

)
− ∇ · (Dα(u)∇cα) = gα, (4.2)

where gα = −λαrαcα + λα−1rα−1cα−1 + c̃αq for α = 1, . . . , Nc.
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Then, the fractional stepping procedure for it corresponds to the transport
equation

∇t,x ·
(

φrαcα

cαu

)
= gα, (4.3)

followed by the diffusive part given by

φrα
∂cα

∂t
+ div vα = 0. (4.4)

Following the notation in [3], consider the space-time slice Q = Ω ×
[tn,κ, tn,κ+1]. Let K be a reasonably shaped, simply-connected subset of Ω,
and define a subset D = Dn,κ(K) of Q as follows. For each x ∈ ∂K, construct
the solution y(x; t) of the final value problem

dy

dt
=

u

φrα
, tn,κ+1 > t ≥ tn,κ, y(x; tn,κ+1) = x, (4.5)

and set
xn,κ(x) = y(x; tn,κ). (4.6)

Then, let K = Kn,κ be the interior of the set {xn,κ(x) : x ∈ ∂K} and
D the tube determined by K, K, and the integral curves (4.5). (For ∆ttr

sufficiently small, the map x → xn,κ is one-to-one, so that this construction
can be carried out.) Now, denote the outward normal to ∂D by σ(x, t), note
that it is orthogonal to the vector (φrαcα, cαu)t on the lateral surface of D,
and integrate (4.3) over D:∫

D
∇t,x ·

(
φrαcα

cαu

)
dx dt =

∫
∂D

(
φrαcα

cαu

)
· σ dA

=
∫

K φrαcα(tn,κ+1, x) dx − ∫K φrαcα(tn,κ, x) dx

=
∫

D gα dx dt.

(4.7)

Thus, mass is conserved locally in the transport step, as defined in (4.3)
above, if∫

K
φrαcα(x, tn,κ+1) dx =

∫
K

φrαcα(x, tn,κ) dx +
∫

D
gα dx dt. (4.8)

4.2 The LCELM Transport Microstep

Computation results show that letting Kij = Mij is a reasonable choice.
Let’s define Kα,ij as the quadrilateral obtained by approximating the integral
curves (4.5) at the vertices xi,j,k, k = 1, . . . , 4, of Kij . Let

xα,i,j,k,n,κ = xi,j,k − Im,n,κ+1ui

φrα
∆ttr (4.9)
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where Im,n,κ+1ui is the interpolation of the known velocity at times tm and
tm+1 at time tm,n,κ+1 defined by

Im,n,κ+1ui =
(

1 − (κ + 1)∆ttr
∆tp

)
um

i +
(

(κ + 1)∆ttr
∆tp

)
um+1

i .

Note that there are Nc copies of the predecessor set of Kij , one for each α.
Since the microstep ∆ttr is usually small with respect to ∆td, in (4.9) we
follow the tangent to the integral curve through (xi,j,k, tn,κ+1) back to the
time level tn,κ. Note that the trace back is in exactly the same direction as
the characteristic; however, in the LCELM it associated with the vertices of
K, rather than in the interior of K as in the MMOC and MMOCAA.
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Figure 1: The heterogeneous permeability field (in millidarcies)
with a coefficient of variation of 2.86 on a 64× 64 grid .

Next, we must discretize the local conservation relation (4.8). Using the
trapezoidal rule, we have

∫
Kij

φrαzα,n,κ+1 dx =
∫
Kα,ij

φrαzα,n,κ dx+
∆ttr

2

(∫
Kij

gα dx +
∫
Kα,ij

gα dx

)
,
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where zα,n,κ is used to denote the solutions of concentration in the transport
step. This is an explicit calculation and only needs to be performed when
gα does not vanish. Moreover, unlike the immiscible problem, it is a linear
equation so the solutions can be solved directly.

2.5e-6

8.5e-6

Figure 2: The pictures are results of a mesh refinement study.

4.3 The LCELM Diffusive Fractional Step
for the Concentrations

After performing the transport microsteps, we have the functions

cα,n = zα,n,a2−1(tn+1) ∈ W

which will be the initial conditions (one for each α = 1, . . . , Nc) at time tn

for the diffusive steps.
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We shall apply the mixed finite element method to the equations

vα,n+1 = −Dα(u)(∇cα), φrα
cα,n+1 − cα,n

∆td
+ div vα,n+1 = 0, (4.10)

subject to the boundary conditions

vα,n+1 · ~n = 0. (4.11)

Thus the mixed finite element equations take the form
(

1
Dα(u)

vα,n+1, ~v

)
− (cα,n+1, div~v) = 0, ~v ∈ V,(

φrα
cα,n+1 − cα,n

∆td
, w

)
+ ( div vα,n+1, w) = 0, w ∈ W.

(4.12)

4.4 The LCELM Pressure Calculation

The equations for {um, pm} are given by (see (3.1))

∇ · um = q, um = −k

µ
∇pm, (4.13)

subject to the boundary condition um · ~n = 0 on ∂Ω. The corresponding
mixed finite element equations are

(µ

k
um, ~v

)
− (pm, div~v) = 0, ~v ∈ V,

( divum, w) = (q, w), w ∈ W.
(4.14)

5 Implementation

The algorithm described in this paper is applied to the decay chain 234U →230

Th →226 Ra. As a preliminary study, only limited numerical results are
presented here; more intensive numerical simulations will be carried out else-
where. A heterogeneous reservoir (see Figure 1) with a coefficient of variation
of 2.86 is used. The reservoir is initially saturated with water. The leakage
(or injection) of uranium from its container into the reservoir occurs at the
left-hand side of the reservoir (slab geometry). The injection is at a constant
rate of 500 years per pore volume with a concentration of uranium of 1e-5.
Only the results of uranium are presented. The values in Table 1 are fixed
in all of the computations.

The relative mass-balance errors using the MMOC in Fig. 2 are 11.9% and
10.6%, for the grids from left to right, respectively. Therefore, the MMOC is
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Table 1: Parameter Values
Viscosity µ(poise/((g/cc)) = 0.01
Porosity φ = 0.01
Decay Constant (234U) λ1 = 9 × 10−14(1/sec)
Retention Factor(234U) r1 = 12
Dispersion(dlong) dlong = 1 × 10−3(cm2/sec)
Dispersion(dtrans) dtrans = 1 × 10−4(cm2/sec)
Dispersion(dmol) dmol = 1 × 10−7(cm2/sec)

more accurate when the grid is finer, which is what we expect. However, the
MMOCAA and LCELM conserve mass exactly, regardless of grid size. Notice
that in the MMOCAA and LCELM figures, the fingers are more defined and
reach the well faster than those in the MMOC. However, the fingers in the
LCELM results are not more defined than those in the MMOCAA results,
but they do reach the well faster.

The pictures in Figure 2 are results of a mesh refinement study of uranium
in a heterogeneous reservoir with a coefficient of variation of 2.86 after 5100
years of simulation using the MMOC (top row), the MMOCAA (middle row)
and the LCELM (bottom row). The grids have elements of sizes 64 × 64
(left-hand side pictures) 128 × 128 (right-hand side pictures).
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Application of a Class of Nonstationary
Iterative Methods to Flow Problems

Xiuren Lei Hong Peng

Abstract

Convergence of a certain class of nonstationary iterative methods
applied to the numerical solution of algebraic linear systems arising in
flow problems is studied. The iteration matrix of these methods can
be expressed by a constant matrix plus a variable matrix tending to
zero. The conclusions of convergence based on the matrix spectrum
are given and applied to a class of semi-iterative methods.

KEYWORDS: algebraic linear system, iterative method, convergence, matrix
spectrum

1 Introduction

Iterative methods for obtaining the numerical solution of algebraic linear
systems can be classified into two broad groups: linear stationary methods
and linear nonstationary methods. For the stationary case, there is a well-
known sufficient and necessary condition for convergence; i.e., the spectral
radius of the associated iteration matrix is less than one. On the other hand,
the problem of convergence of the nonstationary methods is more complex.
For this case, the result based on the spectrum radius analysis is not generally
applicable.

However, as we prove in this paper, for a certain class of nonstationary
iterative methods whose iteration matrix can be expressed by a constant
matrix plus a variable matrix tending to zero, it is possible to establish a
sufficient condition for convergence based on the spectral radius. Also, we
apply the result to a class of semi-iterative methods [1], e.g., the Chebyshev
semi-iterative methods, and obtain the relevant conditions for convergence of
these methods. The result in [2] is a particular case of this paper.
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2 Convergence of Nonstationary Methods

We consider the system of linear equations

Ax = b, (2.1)

where A is an N ×N nonsingular matrix and b is a vector of length N . Let a
class of nonstationary iterative methods consistent with (2.1) be written as

x(n) = Gnx(n−1) + hn, n ≥ 1, (2.2)

where the condition is satisfied

Gn = G + Un, (2.3)

G is a constant matrix independent of n, and

Un → 0, n → ∞.

By (2.2), we can write

x(n) = Tnx(0) + Kn, n ≥ 1,

where

Tn = GnGn−1 · · ·G1,

Kn = hn + Gnhn−1 + GnGn−1hn−2 + · · · + GnGn−1 · · ·G2h1.

Theorem 2.1 (Theorem 3.1 in [3]) The method (2.2) converges if and only
if

lim
n→∞ Tn = 0.

Let S(A) denote the spectral radius of a matrix A; i.e.,

S(A) = max
λ

|λ|,

where λ is an eigenvalue of A.
We need the following three lemmas from [4, pp. 141-146].

Lemma 2.1 Given a matrix A of order N and ε > 0, there exists a matrix
M such that

S(A) ≤ ‖MAM−1‖∞ ≤ S(A) + ε.
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Lemma 2.2 Let A be an N × N matrix and ε > 0. There exist two positive
constants µ1 > 0 and σ > 0, depending on A and ε, such that if for a sequence
of N × N matrices Uk with

‖Uk‖∞ ≤ µ1, k = 1, 2, . . . ,

where
µ1 = ε/(2σ), σ = ‖M‖∞‖M−1‖∞,

then we have∥∥∥∥∥
m∏

k=1

(A + Uk)

∥∥∥∥∥
∞

≤ σ(S(A) + ε)m, m = 1, 2, . . . .

Lemma 2.3 Let A be an N × N matrix such that S(A) > 1 and ε > 0 such
that S(A) − ε > 1. If for a sequence of N × N matrices Uk there exists
δ = δ(A, ε) > 0 such that

‖Uk‖1 ≤ δ, k = 1, 2, . . . ,

then the sequence of matrices

∏
m

:=
m∏

k=1

(A + Uk)

is not convergent when m → ∞.

Theorem 2.2 Let G be given by (2.3). Then, (a) the iterative method (2.2)
is convergent if S(G) < 1; (b) it is not convergent if S(G) > 1.

Proof: (a) The desired result can be obtained by Lemmas 2.1 and 2.2 and
Theorem 2.1. (b) By Lemma 2.3 and Theorem 2.1, we obtain the desired
result. []

3 Convergence of Semi-iterative Methods

Now, we apply Theorem 2.2 to a certain class of semi-iterative methods for
obtaining the solution of (2.1). Let the iterative method for (2.1) be written
as

xn+1 = Ḡxn + k, n ≥ 0. (3.1)

By [5], we get the acceleration polynomial

Q0(x) = 1, Q1(x) = ν1x − ν1 + 1,

Qn+1(x) = ρn+1(νn+1x + 1 − νn+1)Qn(x) + (1 − ρn+1)Qn−1(x), n ≥ 1,
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where ρi and νi are real numbers. The corresponding semi-iterative me-
thods can be obtained by the three-term recurrence relation

u(1) = ν1(Ḡu(0) + k) + (1 − ν1)u(0),

u(n+1) = ρn+1[νn+1(Ḡu(n) + k) + (1 − νn+1)u(n)] + (1 − ρn+1)u(n−1),
(3.2)

for n ≥ 1. We can rewrite (3.2) as

u(n) = ρn

{
[νnḠ + (1 − νn)I]u(n−1) + νnk

}
+ (1 − ρn)u(n−2).

Then we have(
un−1

un

)
=

(
0 I

(1 − ρn)I ρn[νnḠ + (1 − νn)I]

) (
un−2

un−1

)
+ ρnνn

(
0
k

)
;

i.e.,
V (n) = G?

nV (n−1) + h?
n,

where

G?
n =

(
0 I

(1 − ρn)I ρn[νnḠ + (1 − νn)I]

)
,

h?
n = ρnνn

(0
k

)
, V (n) =

(
un−1

un)

)
.

(3.3)

Theorem 3.1 Let limn→∞ ρn = ρ, limn→∞ νn = ν, Ḡ be given by (3.1), and

Ḡ1 =
(

0 I
(1 − ρ)I ρ[νḠ + (1 − ν)I]

)
.

Then, (a) the method (3.2) is convergent if S(Ḡ1) < 1; (b) it is not convergent
if S(Ḡ1) > 1.

Proof: Set

Hn = ρn[νnḠ + (1 − νn)I], H∞ = ρ[νḠ + (1 − ν)I].

Then (3.3) can be written as

G?
n = Ḡ1 + Ūn,

where

Ūn =
(

0 0
(ρ − ρn)I Hn − H∞

)
.

Since
lim

n→∞ Ūn = 0,
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by Theorem 2.2, we complete the proof. []
The Chebyshev semi-iterative methods, discussed in [2], is a particular

case of the semi-iterative methods mentioned here. The results in [2] can be
obtained from Theorem 3.1.
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Reservoir Thermal Recover Simulation
on Parallel Computers

Baoyan Li Yuanle Ma

Abstract

The rapid development of parallel computers has provided a hard-
ware background for massive refine reservoir simulation. However, the
lack of parallel reservoir simulation software has blocked the applica-
tion of parallel computers on reservoir simulation. Although a variety
of parallel methods have been studied and applied to black oil, com-
positional, and chemical model numerical simulations, there has been
limited parallel software available for reservoir simulation. Especially,
the parallelization study of reservoir thermal recovery simulation has
not been fully carried out, because of the complexity of its models and
algorithms. The authors make use of the message passing interface
(MPI) standard communication library, the domain decomposition me-
thod, the block Jacobi iteration algorithm, and the dynamic memory
allocation technique to parallelize their serial thermal recovery simu-
lation software NUMSIP, which is being used in petroleum industry
in China. The parallel software PNUMSIP was tested on both IBM
SP2 and Dawn 1000A distributed-memory parallel computers. The ex-
periment results show that the parallelization of I/O has great effects
on the efficiency of parallel software PNUMSIP; the data communica-
tion bandwidth is also an important factor, which has an influence on
software efficiency.

KEYWORDS: domain decomposition method, block Jacobi iteration algo-
rithm, reservoir thermal recovery simulation, distributed-memory parallel
computer

1 Introduction

The rapid development of parallel computers provides a solid hardware foun-
dation for developing parallel software used in industries such as oil reservoir
recovery and airplane manufacture. There are mainly three kinds of parallel
computers, i.e., shared-memory, distributed-memory, and parallel computers
of the mixed type. The typical vector computers are Cray series, such as
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Cray90. The well-known IBM SP2 and Dawn 1000A are distributed-memory
computers. As for shared-memory parallel computers, the scales of compu-
tation models are limited by the bandwidth of data bus and CPU number.
But for a distributed-memory one, it has good extensibility and does not li-
mit the computation scale. However, accessing to the memory of a neighbor
CPU has to be realized by programmers. It increases the complexity of pro-
grams. It is noticeable that a mixed-type of computers are developed such
as Oringin2000 of SGI Company. This kind of computers greatly decreases
the complexity of programs.

In the past 20 years, the study of parallelization of serial software of oil
reservoir recovery simulation has been carried out on all these kinds of par-
allel computers [1, 16, 15, 6, 9]. It focuses on parallelization strategy, linear
equation solution and parallel software application [12, 9, 13, 10]. Wallis , et
al. [17] developed a nested algorithm to solve linear equations and obtained
high speedup in distribution calculation environment. Killough [7] applied
the domain decomposition method (DDM) based on local grid refinement
to the black oil and compositional models. Briens, et al. [1] studied the
stability of parallel software of the compositional model. Mejerink [11] paral-
lelized the black oil numerical simulation software Bosium by using the block
Jacobi iteration method. Rame [16], et al. parallelized the chemical drive
software UTCHEM by using the vector parallel technology. It can be seen
that parallelization of software of the black oil, compositional, and chemical
models has been deeply studied. In particular, the parallelization algorithms
of linear equation solution have been applied to the calculation of the black
oil model numerical simulation. However, there has been no literature about
parallelization of the thermal recovery simulation.

Most of serial software are parallelized mainly in the part of linear equa-
tion setup and solution. For most of reservoir simulation software, the esta-
blishment of coefficient matrices and solution of linear equations, respectively,
takes 30-40% and 50-60% calculation time; the PVT and rock physical pro-
perty parameter calculation and the initialization of data fields take less than
10% calculation time. Therefore, parallelization of linear equation solution
is the key to obtain high parallel efficiency. Under a shared-memory compu-
tation environment, a high parallel efficiency can be obtained in such mode.
However, for a distributed-memory computer, the memory of a node is li-
mited and it may be impossible to load data without parallelization of the
data load. Besides, data output is also an important factor, which leads to
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communication between nodes. Especially, for large-scale reservoir thermal
recovery simulation, such as history match and whole-scale reservoir simula-
tion, the frequency of I/O operation is high and the scale of data stream is
large, because of frequent operation of large number of injection and produc-
tion wells. In general, data I/O is a bottom neck of reservoir simulation. In a
distributed-memory computation environment, it is necessary to parallel the
I/O part of simulation software.

To meet the increasing requirement for the model scale of refine reservoir
simulation, the authors parallelize the thermal recovery simulation software
NUMSIP by using DDM and test it on distributed-memory parallel compu-
ters. A parallelization strategy is designed to parallelize not only setup and
solution of linear equations, but also I/O, PVT and rock property parameter
calculation and data initialization to improve efficiency of programs. If the
boundaries between sub-domains are along natural faults, there is no commu-
nication between such sub-domains. In such cases, the authors apply an irre-
gular non-overlapping DDM to reduce communication between sub-domains.
The linear equation solution algorithm is the block Jacobi iteration method.
To guarantee the compatibility of software, the standard message interface
MPI is used to realize the data communication. PNUMSIP is tested on both
IBM SP2 and Dawn 1000A.

This paper consists of five parts. The model and algorithm of the serial
software NUMSIP is introduced in §2. In §3, we give the parallelization
strategy, data structure, and data communication mode of PNUMSIP. The
test results are shown and analyzed in §4. We conclude with a few remarks
in §5.

2 Software NUMSIP

NUMSIP is a simulation software of reservoir thermal recovery. It has been
widely used in many oil fields in China, such as Liao He Oil Field, Sheng Li
Oil Field, and Xing Jiang Oil Field. It can be used for designing reservoir
recovery schemes of old and new oil fields, the history match, the production
prediction, and the study of residual oil distribution.

The following physics factors and processes are presented in the model of
NUMSIP:
a) viscosity, gravity and capillary force,
b) heat conduction and convection processes,



198 Li and Ma

c) heat losses of over burden and under burden of reservoir,
d) effect of temperature on physical property parameters of oil, gas and water,
e) rock compression and expansion.
But kinetic, heat transfer, mass transfer, and the thermal cracking of hydro-
carbons caused by molecule diffusion and dispersion are not considered.

The governing equations include the mass conservation equation, the
energy conservation equation, and the mole fraction and saturation constraint
equations.
1) The mass conservation equation

∑Np

j=1

(∫ ∫ ∫
V

∂
∂T (ϕSjρjχij)dv +

∫ ∫
S
(ρjχijvj)ds

)
+qi = 0, i = 1, . . . , Nc,

(2.1)

where ϕ is the rock porosity, ρj the density of the material in phase j, Sj

the saturation of the material in phase j, vj the surface flow velocity of the
material in phase j, χij the mole fraction of composition i in phase j, qi the
source item of composition i, and Np the number of phases.
2) The energy conservation equation

∫ ∫ ∫
V

∂
∂T

(
ϕ

∑Np

j=1 ρjSjuj + (1 − ϕ)ρrockCp(T − Ti)
)

dv

+
∫ ∫

S
(qh + qc)ds + Qh + Qc = 0,

(2.2)

where uj is the inner energy of the material in phase j, ρrock the rock density,
Cp the rock heat capacity, Ti the temperature of component i, qh the enthalpy
flow velocity, qc the heat flow velocity, Qc the heat source item, and Qh the
enthalpy source item.
3) The mole fraction constraint equation

Nc∑
i=1

χij = 1. (2.3)

4) The saturation constraint equation

Np∑
j=1

Sj = 1. (2.4)

The finite difference method (FDM) is used to discrete the above partial
differential equations. More advanced methods [4] will be used. The sorting
methods, such as the natural, red-black, and D4 sorting can be selected by
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users to establish linear equations. Both the Gauss method and ORTHOMIN
method can be used to solve linear equations.

The serial NUMSIP consists of 258 modules. Because it has a good pro-
gram structure, it is convenient for organization of structure of its parallel
version PNUMSIP. To spare space, NUMSIP stores the data fields in a com-
pact array. It decreases readability of programs and data access efficiency
and increases the difficulty to parallelize them. It is not suitable for paralle-
lization under a shared-memory parallel calculation environment.

3 Parallelization of NUMSIP

The aims to parallelize NUMSIP are a) to increase the model scale, b) to
obtain the speedup and efficiency of software, and c) to develop a transplan-
table and stable parallel software of thermal recovery simulation. Toward
that end, various factors are synthetically taken into account.

3.1 Software Parallelization

Because 60-80% percent of calculation time is used for establishment and
solution of linear equations, the prevailing strategy is to parallelize only these
parts. However, it results in a problem; e.g., the model scale is limited by
the size of accessible memory of a CPU. This problem becomes prominent
in a parallel computation environment consisting of a workstation cluster.
To solve this problem, a global parallel scheme is designed to parallelize a
whole calculation process in DDM. It will benefit for improving speedup and
efficiency of a program. To decrease data communication and simplify data
structure, a non-overlapping irregular DDM is adopted. It is particularly
suitable for the case that boundaries between sub-domain are along a natural
fault, which can decrease data communication. For every sub-domain, the
matured serial algorithm is used.

3.2 Domain Decomposition

To realize the domain decomposition, a 2D array Id(i, j) is introduced to
mark different sub-domains. Its definition is given as follows:

Id(i, j) = k for grid (i, j) belonging to sub-domain k. (3.1)

The boundaries between sub-domains can be traced from Id(i, j). Only
the boundaries, which are not along natural faults, can be determined as valid
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boundaries. For a valid boundary, there will be communication between the
two sub-domains divided by this boundary.

3.3 Data Structure

On the basis of the original compact data array, two buffer arrays Bi and
Be are introduced, respectively, to store the inner and outer boundary of a
sub-domain. In the iteration calculation process, Bi is updated by the data
field generated by the calculation at different iteration steps. It is transferred
to the outer boundary buffer array Be of the neighboring sub-domain; see in
Fig. 1.

1 2 3 4 5 6 7 8

Fig. 2. Domain decomposition of test problem T1.

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

Fig. 3. Domain decomposition of test problem T2.

3.4 Data Communication

According to the time variant characteristic of data to be transferred, the
communication data are divided into three types, i.e., static data and slow
and fast transient data. The data describing the geometric model of reservoir
and rock property parameters are static data. The base values of the data
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field at a time step in the iteration calculation process are slow transient
data, and the increment values of the data field at an iteration step of the
Newton-Raphson iteration are fast transient data. The block communication
mode is used to transfer static data and slow transient data. But the non-
block communication mode is adopted for transferring fast transient data to
reduce communication overhead and improve communication efficiency.

3.5 Time Step Control

To ensure that the well data of all production periods can be safely loaded and
satisfy the Newton-Raphson linearization condition, the minimum time step
is selected. The domain is divided by using DDM and every sub-domain has
a predicted next time step at every time step. To synchronize the calculation
processes at different sub-domains, the time step control is determined as
follows:

a) predict time step ti,k+1 at sub-domain i, i = 1, 2, . . . , N ,
b) determine the (k + 1)th synchronic time step tk+1 by

tk+1 = min{t1,k+1, t2,k+1, . . . , tN,k+1},

c) determine the (k + 1)th time step ti,k+1 of sub-domain i, ti,k+1 = tk+1.

3.6 Linear Equation Solution Algorithm

The block Jacobi iteration algorithm is adopted to solve linear equations. The
linear equations are established in the FDM and Newton-Raphson method.
They are presented as follows:
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A11 A12 . . . A1N

A21 A22 . . . A2N

A31 A32 . . . A3N

AN1 AN2 . . . ANN







X1

X2

X3

XN




=




B1

B2

B3

BN




(3.2)

where X1, X2, . . ., XN , respectively, are solution vectors of data fields of sub-
domains G1, G2, . . ., GN . To solve these linear equations, an initial solution
vector is given as X0 = [X0

1 , . . . , X0
N ]t. The kth iteration value of solution

vector can be obtained from

AiiX
k
i = Bi −

i−1∑
j=1

AijX
k
j −

N∑
j=i+1

AijX
k−1
j . (3.3)

The modification work of NUMSIP focuses on I/O. More than ten modules
are modified and 24 new modules are added to realize parallelization of I/O,
tracing of boundaries, establishment of linear equations, well distributions,
and data communication.
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4 Test and Calculation Results

4.1 Hardware Environment

The IBM SP2 used for testing PNUMZIP is a distributed-memory computer,
which consists of IBM RISC system/6000 workstations, high performance
switch board, control workstation, and SP ether network. Its CPU clock
frequency is 66.7 MHz. The peak calculation speed is 226Mflops. The com-
munication bandwidth of its high performance switch board is 40Mbps and
the bandwidth of its SP ether network is 1.25Mbps. It has 28 calculation
nodes. Four of them are wide nodes and the rests are narrow nodes. A
wide node has 128M memory and a narrow one has 64M memory. Parallel
calculation process can run on only narrow nodes.

Dawn 1000A used for testing PNUMSIP has a structure similar to that
of IBM SP2. It has eight nodes used for calculation. The clock frequency of
CPU chips is 200 MHz. A node has 256M memory and 4.3G hard disk. The
communication bandwidth of its high performance switch board is 10Mbps.

4.2 Test Results and Analysis

The test problems are cases used for study on well group schemes. One well
group consists of 8 wells. Because of the limit of memory size of the used
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parallel computers, the data model size of test problems T1 and T2, respec-
tively, consists of only 8 and 16 well groups. Their grid sizes, respectively,
are 96×12×10 and 96×24×10 grids. The deposition of well groups of these
two problems are given in Figs. 2 and 3. There is a fault between sub-domain
4 and 5.

Tables 1 and 2 give the experiment results of T1 and T2 tested on IBM
SP2, where WOF and WF indicate without fault and with fault, respectively.
Figs. 4 and 5 are the calculation time of these two test problems. It can be
seen that a superlinear speedup can be obtained on IBM SP2, if the number
of CPU is not more than ten. However, the efficiency of PNUMSIP decreases
seriously for T2, compared with T1.

Case CPU number Serial 2 4 8
WOF Wall-clock time (s) 4180.3 1674.9 797.6 464.4
WOF Speed up 1.000 2.496 5.241 9.002
WOF Efficiency 1.000 1.248 1.310 1.125
Case CPU number Serial 2 4 8
WF Wall-clock time (s) 4180.3 1387.1 810.6 465.8
WF Speed up 1.000 3.014 5.158 8.974
WF Efficiency 1.000 1.507 1.289 1.122

Table 1. Experiment results of T1 on IBM sp2.

CPU number Serial 2 4 8 16
Wall-clock time (s) 15059.3 6223.9 4400.4 2492.4 5104.4

Speed up 1.000 2.420 3.422 6.0422 2.950
Efficiency 1.000 1.210 0.856 0.755 0.184

Table 2. Experiment results of T2 on IBM sp2.

The reason for the superlinear speedup can be explained by the paralle-
lization of I/O. For the serial software NUMSIP, all the well data are loaded
by one CPU. But for the parallel software PNUMSIP, the well data are si-
multaneously loaded by a number of CPUs. The total cache buffer size used
by PNUMSIP is much greater than that used by NUMZIP. Therefore, the
input time for PNUMSIP will be much shorter than that for NUMSIP. Table
1 shows that the parallel efficiency is improved for a case that the boundaries
between sub-domains are along natural faults, only if all the boundaries bet-
ween sub-domains are not valid boundaries. The total length of boundaries
between sub-domains of T2 is generally greater than that of T1 and it results
in more data communication and more modifications of linear equation co-
efficient matrices, which leads to the increase of iteration times of the linear



Reservoir Thermal Recover Simulation 205

equation solution. Therefore, the parallel efficiency of T2 is less than that of
T1. The rapid increase of data communication and iteration calculation times
can also explain why the parallel efficiency drops seriously, as the number of
CPUs becomes too large.

Case CPU number Serial 2 4 8
WOF Wall-clock time (s) 1238.8 1244.9 741.6 351.3
WOF Speed up 1.000 0.995 1.670 3.526
WOF Efficiency 1.000 0.498 0.418 0.441

Table 3. Experiment results of T1 on Dawn 1000A.

Table 3 is the results of T1 without faults tested on Dawn 1000A. Fig. 4
is the comparison of the efficiency of PNUMSIP obtained on IBM SP2 and
Dawn 1000A with case T1. It shows that the speedup and efficiency of PN-
UMSIP running on IBM SP2 is much higher than those of PNUMSIP running
on Dawn 1000A with the same test problem. But the calculation time of PN-
UMSIP running on Dawn 1000A is less than that of PNUMSIP running on
IBM SP2. Because the clock frequency of CPUs on Dawn 1000A is faster
than that of CPUs on IBM SP2, as seen in Section 4.1, the calculation speed
of Dawn 1000A is faster than that of IBM sp2, so the calculation time of
Dawn 1000A is less than that of IBM SP2. Compared with IBM SP2, the
communication speed of Dawn 1000A is too slow, as seen in Section 4.1. It
affects the iteration calculation process of PNUMSIP. Because the non-block
communication is used to transfer fast transient data and the data communi-
cation delay is mainly caused by the low communication speed, the iteration
solution values of neighboring sub-domains used for calculating new iteration
solution values may not be updated in time. It slows down the iteration cal-
culation speed and results in a low speedup and efficiency of parallel software.

5 Conclusions

The following conclusion can be drawn from the test results of PNUMSIP.
The parallelization of benefits the efficiency improvement of parallel software
of reservoir thermal recovery simulation. The data communication band-
width of computers is an important factor which affects the speedup and
efficiency of PNUMSIP. PNUMSIP is a stable and efficient parallel software
of reservoir thermal recovery simulation.
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A Class of Lattice Boltzmann Models
with the Energy Equation

Yuanxiang Li Shengwu Xiong Xiufen Zou

Abstract

In this paper a class of lattice Boltzmann models with the energy
equation for simulating fluid thermodynamics are studied. The features
of this class of models are that the discrete velocity set consists of
multi-speed velocities and the internal energy of fluid is introduced
by a multi-speed. Therefore, the energy term appears in the local
equilibrium distribution functions of these models. Two examples are
given in this paper. One is a 1D model and the other is a 2D model,
which are used to model a shock wave tube problem and the Benard
convection problem, respectively.

KEYWORDS: lattice Boltzmann model, energy equation, shock wave tube,
Benard convection

1 Introduction

The lattice gas automata (LGA) method has attracted considerable attention
during the last several years in both modeling physical systems and solving
partial differential equations. In more recent years there has been a trend of
using the lattice Boltzmann (LB) scheme instead of the lattice gas automata
method. Unlike the LGA method in which one keeps track of each indivi-
dual particle, in the lattice Boltzmann approach we are only interested in
the particle distribution function. While retaining the advantages existing in
the LGA, such as parallel implementation, simple programming, and clear
physical images, the LB method is more efficient and accurate in computa-
tion in an essentially noise-free manner [1] and has been applied in many
areas such as flows in porous media and magneto-fluids. However, most of
the models previously considered have not involved the energy equation. In
this paper we discuss a class of lattice Boltzmann models with the energy
equation by introducing multi-speed velocities to discrete velocity sets. Then
particles can exchange internal energy during interactions. Therefore, the
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energy term appears in particle distribution functions (i.e., the local equi-
librium distribution function). In §2, a general description of this class of
models is given. In §3, two examples are given; one is a 1D model and the
other is a 2D model. Numerical experiments are made in §4. The two models
are used to model a shock wave tube problem and the Benard convection pro-
blem, respectively. The results show that the models can effectively simulate
fluid thermodynamics.

2 A Class of Lattice Boltzmann Models

Divide the domain of a flowing field in a d-dimensional space into a regular
lattice and the discrete velocity set V = {ei : i = 1, . . . , b}. Let fi(x, t) be
the particle distribution function with velocity ei at site x and time t. The
model evolves according to the lattice Boltzmann equation

fi(x + ei, t + 1) = fi(x, t) + Ωi, (2.1)

and

Ωi = −1
τ

(fi(x, t) − feq
i (x, t)), (2.2)

where Ωi is called the collision term or the collision function and τ is a
relaxation factor (τ > 1/2). According to the physical conservation law, Ωi

must satisfy the conservation law of mass, momentum and energy

b∑
i=1

Ωi = 0,

b∑
i=1

Ωiei = 0,
b∑

i=1

Ωi
1
2
e2

i = 0. (2.3)

In (2.2), feq
i is the local equilibrium distribution function depending on the

dynamic quantities of density, momentum, and energy at site x and time t.
In the classical gas dynamics, feq

i is the Maxwell-Boltzmann distribution. As
an approximation of the Maxwell-Boltzmann distribution, let

feq
i = c0 + c1(ei · u) + c2(ei · u)2 + c3u

2 + c4(ei · u)3 + . . . , (2.4)

where u is the velocity of fluid and ck(k = 0, 1, . . .) are undetermined coeffi-
cients, which depend on ρ and ε that are the density and the specific internal
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energy of the fluid, respectively, defined as follows:

ρ =
b∑

i=1
fi(x, t) =

b∑
i=1

feq
i (x, t),

ρu =
b∑

i=1
fi(x, t)ei =

b∑
i=1

feq
i (x, t)ei,

ρε = 1
2

b∑
i=1

fi(x, t)(ei − u)2 = 1
2

b∑
i=1

feq
i (x, t)(ei − u)2.

(2.5)

Taking the zeroth, first, and second order moments of ei from (2.1) and using
(2.3) and (2.5), we can obtain the mass, momentum, and energy equations
of fluid

∂ρ

∂t
+ ∇(ρu) = 0,

∂(ρu)
∂t

+ ∇Π = 0,
∂(ρE)

∂t
+ ∇Q = 0, (2.6)

where Π is the momentum-flux tensor of fluid, E = ε+ 1
2u2 (the energy), and

Q is the energy-flux vector, which are defined as

Παβ =
b∑

i=1

eiαeiβfi(x, t), Qα =
1
2

b∑
i=1

(ei)2(ei)αfi(x, t). (2.7)

To derive the Navier-Stokes equation, Π must be isotropic. To obtain Π
must be combined with some concrete models. In the next section we present
two example models; Π is obtained approximately by using the Chapman-
Enskog expansion [3] and properly selecting the local equilibrium distribution
function like (2.4).

3 Thermodynamic Models

In the thermodynamic motion, fluid particles must exchange energy. Hence,
to simulate the thermodynamic feature, modules of ei(i = 1, 2, . . . , b) in the
set V of LB models should not be the same.

3.1 A 1D Model

For the problem of 1D flows, the straight line is divided into a uniform lattice
and the step size is unit one. Then the set V is chosen as V = {−2,−1, 0, 1, 2},
which contains five velocities and three speeds, 0, 1, and 2. According to the
speed σ(σ = 0, 1, 2), ei and feq

i are rewritten as eσi and feq
σi , respectively.
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Now, we choose feq
σi as follows:

feq
0 = ρ(1 − ε) − 1

2ρu2 + 1
4ρu4,

feq
1i = 1

3ρε + 1
3ρ(1 − ε)(e1i · u) + 1

6ρu2 − 1
6ρ(e1i · u)3 − 1

6ρu4,

feq
2i = 1

6ρε + 1
24ρ(1 + 2ε)(e2i · u) + 1

12ρu2 + 1
12ρ(e2i · u)3 + 1

24ρu4,

(3.1)

with i = 1, 2. Taking the Chapman-Enskog expansion of the particle dis-
tribution function fσi by the local equilibrium distribution function feq

σi , we
have

fσi = f
(0)
σi + f

(1)
σi + f

(2)
σi + . . . , (3.2)

where f
(0)
σi = feq

σi . Likely, Π and Q possess the same expansion after using
(2.7):

Π = Π(0) + Π(1) + Π(2) + . . . , Q=Q(0) + Q(1) + Q(2) + . . . . (3.3)

Under the zeroth order approximation, we have

Π(0) = 2ρε + ρu2 = p + ρu2, Q(0) = ρEu + pu, (3.4)

with p = 2ρε (the pressure). Consequently, the Euler equation is obtained:

∂ρ

∂t
+

∂(ρu)
∂x

= 0,
∂(ρu)

∂t
+

∂(p + ρu2)
∂x

= 0,
∂(ρE)

∂t
+

∂(ρEu + pu)
∂x

= 0. (3.5)

If taking the expansion to the first order term of Π and Q, we can have the
Navier-Stokes equation and the heat conduction equation

∂(ρu)
∂t + ∂(ρu2)

∂x = − ∂p
∂x + ∂

∂x (µ∂u
∂x ),

∂(ρE)
∂t + ∂(ρEu)

∂x = −∂(pu)
∂x + ∂

∂x (κ ∂ε
∂x ),

(3.6)

with µ = 2ρε(2τ − 1) and κ = 7ρε(2τ − 1)/3, which are the viscosity and the
heat conductivity respectively.

3.2 A 2D Model

As for a flow problem on the 2D plane, the field is divided into a uniform
square mesh and the step size is unit one in both directions. Then the set V is
chosen as V = {(0, 0), (1, 0), (

√
2,

√
2), (0, 1), (−1,

√
2), (−1, 0), (−√

2,−√
2),

(0,−1), (
√

2,−√
2), (2, 0), (0, 2), (−2, 0), (0,−2)}, which contains thirteen
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velocities and four speeds, 0, 1,
√

2, and 2. Now, the feq
σi ’s are chosen as

feq
0 = ρ(1 − 5

2ε + 9
4ε2) − 2

3ρu2,

feq
1i = ρ( 2

3ε − 5
6ε2) + ρ( 2

3 − ε)(e1i · u) + 1
2ρ(e1i · u)2 − 1

6ρu2 + 1
3ρ(e1i · u)3,

feq√
2i

= 1
8ρε2 + 1

4ρε(e√
2i · u) + 1

8ρ(e√
2i · u)2 − 1

24ρu2 + 1
8ρ(e√

2i · u)3,

feq
2i = ρ( 7

48ε2 − 1
24ε) − ρ( 1

24 − 1
18ε)(e2i · u) − 1

96ρu2 + 1
96ρ(e2i · u)3,

(3.7)
with i = 1, 2, 3, 4. By the same way as above, taking the Chapman-Enskog
expansion to the zeroth order term and the first order term, we can obtain
the Euler and Navier-Stokes equations, respectively,

∂t(ρuα) + ∂β(ρuαuβ) = −∂αp, ∂t(ρε) + ∂β(ρεuβ) = −∂β(puβ), (3.8)

and

∂t(ρuα) + ∂β(ρuαuβ) = −∂αp + ∂β [ν∂β(ρuα) + ζ∂α(ρuβ)],

∂t(ρε) + ∂β(ρεuβ) = −∂β(puβ) + ∂α(κρ∂αε) + ∂α[νuβ∂β(ρuα) + ζ∂α(ρu2)],
(3.9)

where ν = ε(2τ −1)/2, κ = ε(2τ −1), and ζ = 2, which are the shear viscosity,
heat conductivity, and bulk viscosity, respectively.

3.3 Numerical Experiments

To examine the models presented above, we apply them to two problems,
which are a shock wave tube problem and the Benard convection problem.

The 1D model in §3.1 is applied to the shock wave problem with Sod’s
initial conditions [7]:

(ρL, uL, pL) = (1.0, 0.0, 1.0), (ρR, uR, pR) = (0.125, 0.0, 0.1).

Fig. 1 gives the results at time step 30. The numerical results show that the
LB model gives the correct position and the resolution of the shock wave and
contact discontinuity are also good.

The second model is used to the Benard convection problem which comes
from a thermal convection experiment of a fluid that Benard did in 1900.

A container is filled up with a fluid. The distance between the upper and
the lower plates of the container is much smaller than the width and the
length of the plates. Heating the lower plate continuously, the temperature
gradient arises in the fluid. If the temperature difference between those two
plates, ∆T = Tl − Tu, is not large, the fluid is macroscopically still in the
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Figure 1: The shock wave tube problem.

stationary state. Eventually, when ∆T exceeds a critical value, the stationary
state of the fluid is broken down suddenly and is replaced by the convection
state. The convection circuits, i.e., the Benard pattern, can be seen in the
container.

The mathematical description about the Benard convection problem is
the Boussineq equations [2]

∇ · u = 0,

1
P (∂u

∂t + (u · ∇)u) = −∇p + 4u + Raαθλ,

∂θ
∂t + u · ∇θ = u · λ + 4θ.

The boundary conditions are

u = 0, θ = 0, x3 = 0, 1,

where λ = (0, 0, 1) is a upper vertical unit vector, θ denotes the difference of
temperature distribution between a certain initial state of the fluid and its
perturbed state. P = ν/κ is called the Prandtl number and Ra = gαd3 ∆T

νκ
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Figure 2: The Benard pattern.

the Rayleigh number in which ν, κ, g, α, and d are the shear viscosity, the heat
conductivity, the gravity acceleration, the coefficient of heat expansion, and
the thickness of the fluid layer, respectively. This is a bifurcation problem.
As the parameter Ra changes, the solution of the problem also changes.
When the Rayleigh number Ra > 1708, the heat conduction of the fluid layer
changes into the Benard convection.

In our simulation, a rectangle container is chosen and it is divided into
a square lattice of 80 × 20. The initial state of fluid in the container is
given randomly and the boundary conditions are treated as in [8]. The result
at time step 763 is shown in Fig. 2 and a very good convection pattern is
obtained which is in a good agreement with the result of experiment.
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Block Implicit Computation of Flow
Field in Solid Rocket Ramjets

Zhibo Ma Jianshi Zhu

Abstract

To compute the flow field in solid rocket ramjet (SRR) in which the
chamber has a complex boundary, a block implicit algorithm (BIA)
had been developed. The boundary conditions of three-dimensional
steady-state Navier-Stokes (NS) equations were treated by modifying
the discrete equations and the grids were generated through an alge-
braic way. These methods have been put into practice and proved to
be valid and efficient in the computation of flow field in the chamber.
The technique developed here applies to similar problems in porous
medium flows.

KEYWORDS: rocket ramjet, numerical simulation, block implicit algorithm

1 Introduction

For the purpose of numerical study on the reaction flow field in SRR, the
authors of this paper have developed a computer program in which the BIA
has been adopted [2-4]. In this program all the control equations are in a
cylindrical coordinate system and accordingly the domain of flow field is a
simple column.

In the real SRR or so-called ducted rocket, the dome plate always presents
the shape of a ellipsoid and the fuel nozzles are inserted into the forepart of
the chamber. Such designs of structure make the field boundary complica-
ted. For the sake of accommodating these situations, one may think that the
curvilinear coordinate system would be the first choice, but this may not be
the best idea because it increases the computational cost. In fact, the most
part of the long chamber is in the shape of a column and it is still advantage-
ous to use the cylindrical coordinate system if the boundary conditions could
be processed properly. In this paper the coordinates of grids are calculated
with an algebraic method and the treatment of boundary conditions of NS
equations is discussed corresponding to these specific grids.

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 216–221, 2000.
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2 Generation of Grids

A new program has been developed to generate automatically grids. In the
program the grids are generated in such a manner that the resulting com-
putational domain can cover the actual domain. The boundary grids at the
forepart of the chamber present the profile of ladders. This treatment can
lead to a high accuracy in numerical simulation.

To eliminate the false numerical waves of pressure, a stagger-mesh has
been adopted. In the stagger-mesh system, scalars are stored on the main
grids and velocities are stored on the interface of the main grids. For three-
dimensional problems, each control volume (or a main grid) has six interfaces.
These interfaces can be divided into three kinds, each of which is perpendicu-
lar to the axes of x, r, and θ, respectively. During the process of calculations,
each interface is labeled by a predefined integral number, which is stored
in arrays named judx(i,j,k), judr(i,j,k) and judth(i,j,k) corresponding to the
three kinds of interfaces. The integral numbers representing the characteri-
stics of interfaces are defined as follows:

“0” ......... means the interfaces are on the wall;

“1” ......... means the interfaces are in the inner field;

“11” .........means the interfaces are at the front air inlets;

“12” .........means the interfaces are at the back air inlets;

“21” .........means the interfaces are at the first fuel nozzle;

“22” .........means the interfaces are at the second fuel nozzle;

“23” .........means the interfaces are at the third fuel nozzle.

When calculating flow fields, we must follow the conservation of mass of
air and fuel, so in the process of discretization, the areas of interfaces must
meet the conditions

∑
judx(i,j,k)=11

Ax(i, j, k)cosA1 +
∑

judr(i,j,k)=11
Ar(i, j, k)sinA1 = AREA1,∑

judx(i,j,k)=12
Ax(i, j, k)cosA2 +

∑
judr(i,j,k)=12

Ar(i, j, k)sinA2 = AREA2,

where AREA1 and AREA2 denote the cross-section areas of front and back
air inlets, respectively. The grids on the fuel nozzles occur in the same way.
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3 Outline of Block Implicit Algorithms

The steady control equation on a finite volume can be generally described in
an integral form ∮

∆~S

(ρ~V φ − Γφ 5 φ) · d~S =
∫

∆V

SφdV,

where φ denotes velocities or scalars.
When using a block implicit algorithm to solve the steady-state NS equa-

tions, the symmetrically coupled Gauss-Seidel (SCGS) technique is adopted
in sweeping through the grids to smooth u, v, w, and p. For the grid with
indices (i, j, k), the variables to be smoothed can be described as a column
vector [1]

~X = [x1 x2 x3 x4 x5 x6 x7],

and ~X is seperated into two parts as

~Xnew = ~Xold + ∆ ~X,

when it is updated. The corresponding discrete equations of ∆ ~X are

A∆ ~X = B. (3.1)

It can be easily solved through a direct method.

4 Treatment of Boundary Conditions

To solve the NS equations of compressible flow in the chamber of SRR, com-
putational conditions must be given by: (a) velocities and stagnation tempe-
ratures of air at the exit of inlets and those of fuel at the exit of fuel nozzles
and (b) pressure at the exit of the chamber.

Generally, the mass flows of air and fuel are design parameters, so their
velocities are unknown and must be recomputed continually to meet the given
flows according to the densities at the air inlets and fuel nozzles. The density
is obtained from the ideal gas state equation

ρ = p/RT ,

where the temperature is computed from the thermal enthalpy H and special
heat Cp such as

T = H/Cp.
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Like the velocities on the entrance of the chamber, the pressure at the exit
of the chamber (or the so-called pout) is also an unknown quantity. The
pout must be continually updated along with the iteration cycles on u, v,
w, and p to meet the real boundary conditions. In other words, pout is
regarded as a constant in each cycle mentioned above and finally determined
by other predefined parameters and physical states such as the stagnation
pressures of air and fuel, the throat area of the chamber nozzle, and the
combustion efficiency. To avoid divergence in solving the NS equations using
BIA, care must be taken to treat the pressure, density, and velocity at the
boundaries. With regard to the problem about the SRR chamber, five kinds
of boundaries are encountered. Except at the exit of the chamber, a zero-
derivative condition is used on the variables p and ρ at the boundary faces.
At the exit of the chamber, pressure is given by pout as

p(imax − 1, j, k) = pout,

and the density is obtained from the ideal gas state equation.
The velocities can be computed through their discrete equations described

as follows:
(a) At the entrance of air and fuel
At the entrance the velocities can be regarded as constants within each

iteration cycle on u, v, w, and p, but they can not be allowed to be equal to
the constants directly or it leads to divergence. In fact, the velocities on the
boundaries are allowed to fluctuate, but finally they converge to the practical
values. For example, at the entrance of air, if the three velocity components
are Uair, Vair, and Wair, then their discrete equations corresponding to equa-
tion (3.1) are revised as

a11∆u(i, j, k) + a17∆p(i, j, k) = a11[Uair − u(i, j, k)old],

a33∆v(i, j, k) + a37∆p(i, j, k) = a33[Vair − v(i, j, k)old],

a55∆w(i, j, k) + a57∆p(i, j, k) = a55[Wair − w(i, j, k)old].

(b) At the solid wall face
As the non-slide condition is adopted, the speed of fluid is zero on the

wall, so the discrete equations of u(i, j, k), v(i, j, k), and w(i, j, k) are

a11∆u(i, j, k) + a17∆p(i, j, k) = −a11u(i, j, k)old,

a33∆v(i, j, k) + a37∆p(i, j, k) = −a33v(i, j, k)old,

a55∆w(i, j, k) + a57∆p(i, j, k) = −a55w(i, j, k)old.
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(c) At the symmetric plane
In this situation, w(i, j, k) or w(i, j, k + 1) become zero, so their discrete

equations are

a55∆w(i, j, k) + a57∆p(i, j, k) = −a55w(i, j, k)old,

a66∆w(i, j, k + 1) + a67∆p(i, j, k) = −a66w(i, j, k + 1)old.

(d) At the axis of the chamber
At the first layer of grids near the axis of the chamber, the SCGS operator

can not be applied, so the velocities are approximated by using those of the
second layer of grids:

u(i, 1, k) = u(i, 2, k),

v(i, 1, k) = cos(0.5(θ(i, j, k) + θ(i, j, k + 1)))v0(i),

w(i, 1, k) = sin(θ(i, j, k))v0(i),

where
v0(i) = |~v0(i)|.

In the above formula, ~v0(i) is the velocity component projected in the (r, θ)
plane of the fluid, the position of which is on the axis of chamber.

To keep the conservation of mass flow, the variables of v(i, 2, k) must be
obtained from the mass continuity equation.

(e) At the exit of chamber
The flow field can be regarded as fully developed at the exit of the cham-

ber; therefore, the derivatives of velocities along with the chamber axis are
considered to be zero. They are described as

u(imax, j, k) = u(imax − 1, j, k), v(imax, j, k) = v(imax − 1, j, k),
w(imax, j, k) = w(imax − 1, j, k).

5 Numerical Example

To verify the quality of the treatment of boundary conditions, we have calcu-
lated a problem of a model ramjet that has two front air inlets and two back
fuel nozzles. The structure is symmetrical in (r, θ) plane. The computation
domain of θ is 0◦ ∼ 90◦. The mesh contains 34 × 17 × 11 grid nodes. To
solve the compressible problem (neglecting the chemical reaction), it spends
PC586 about 3.0 minutes when the norm of residuals converges to a level less
than 10−5. The normalized error of flow at the exit of chamber is less than
0.3%.
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6 Conclusions

The numerical simulation on reaction flow in SRR is a burdensome task that
spends much computation time, so it is important to develop a numerical
method to solve efficiently this practical engineering problem. Through the
approach described above, the grids are generated rapidly by an algebraic
way. With the special treatment of boundary conditions, the NS equations
can be solved quickly in the cylindrical coordinate system and the conserva-
tion of mass flow can be well observed even for the chamber with a large L/D
ratio. The computer program developed under the guidance of these ideas
plays a useful role in the research and development on SRR.
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Stable Conforming and Nonconforming Finite
Element Methods for the Non-newtonian Flow

Pingbing Ming Zhong-Ci Shi

Abstract

Some mixed finite element methods for a non-Newtonian flow pro-
blem are discussed in this pape. A new variational formulation is pro-
posed to handle the Newtonian-viscosity dependent problem arising
from a three-field version of the White-Metzner model. It allows us
to derive Newtonian-viscosity independent error bounds and to facili-
tate the choice of stable finite element spaces. Moreover, a continuous
stress approximation can be obtained without any extra effort. The
enhanced-strain-oriented quadrilateral Wilson-P1 element is used for
approximating the two-field version with or without a modification on
the variational formulation. Stability is justified and quasi-optimal
error bounds are presented.

KEYWORDS: mixed finite element, Wilson element enhanced strain method,
Korn inequality

1 Introduction

Non-Newtonian flows are extensively involved in a number of problems such
as the production of oil and gas from underground reservoirs. Such kind
of problem has an intrinsic, two-scale coupling which poses some challenges
in the numerical simulation, and the difficulty emanates from the nonlinear
viscosity. Numerical simulation of many problems in this field is still open.
In this paper we consider a simplified model, which possesses some intrinsic
characters of the original problem. It is believed that an effective algorithm
for the original problem should be effective for the simplified model considered
herein.

Our assumptions for the simplification are the following: only steady-state
flows are take into account, inertial effects are ignored, the Deborah number
is small, and, consequently, we only consider quasi-Newtonian fluids.
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The line of the paper follows: in §2, the White-Metzner model is presen-
ted and a new variational principle is proposed to deal with the Newtonian-
viscosity-dependent problem and in §3, the enhanced-strain-oriented quadri-
lateral Wilson-P1 element is presented and analyzed.

2 Model of White-Metzener and Newtonian-
Viscosity Dependent Problem

We give a brief description of a White-Metzner model for the viscoelastic
flow. We refer to [7] for a more general description.

Let Ω be a bounded convex polygonal in RN (N = 2, 3) with the Lipschitz
boundary Γ. RN is equipped with Cartesian coordinates xi, i = 1, . . . , N . For
a function u, ∂u

∂xi
is written as u,i, and the Einstein convention for summation

is used.
For a scalar function p, the gradient of p is a vector ∇p, and (∇p)i = p,i. If

q is another scalar function, we denote (p, q) =
∫
Ω pq. For a vector function u,

the gradient of u is a tensor ∇u, (∇u)ij = ui,j , divu = ui,i, u·∇ = ui
∂

∂xi
. For

a tensor function σ, ∇·σ is a vector function, (∇·σ)i = σij,j , σ : τ = σi,jτi,j ,
|σ|2 = σ : σ, and (σ, τ) =

∫
Ω σ : τ .

To describe the flow, we use the pressure p (scalar), the velocity vector
u, and the total stress tensor σtot. Eu = 1

2 (∇u + ∇T u) is the rate of strain
tensor, and Eq(u) = 1

2Eij(u)Eiju is the second invariant of Eu.
A White-Metzner type model is described by the constitutive equations:

σtot = σ + σN − pI, (I)ij = δij , σN = 2µEu, σ = 2η(Eq(u))Eu,

where µ is the Newtonian part of the viscosity and η is the viscosity function
for the viscoelastic part. The velocity u must satisfy the incompressible
condition

divu = 0.

In this paper we consider the stationary creeping flow [11]. The fluid is
subject to a density of force f . Then the momentum equation is

−divσtot = f .

Two classical laws for η are the Power law and Carreau’s law [11]:
Power law: ηp(z) = 1

2gz
(r−2)

2 , r > 1, g ≥ 0;
Carreau’s law: ηc(z) = (η0 − η∞)(1 + λz)

r−2
2 , 0 ≤ η∞ < η0, r > 1.
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Sobolev spaces are needed. T = [Lr′
(Ω)]

N(N+1)/2
= {τ = (τij) | τij =

τji, τij ∈ Lr′
(Ω), i, j = 1, . . . , N} with the norm ‖τ‖T = (

∫
Ω |τ |r′

)
1
r′ . (·, ·)

denotes the inner product of X = [W 1,r
0 (Ω)]N , M = Lr′

0 (Ω) = {q ∈ Lr′
(Ω) |∫

Ω q = 0}. X and M are equipped with the norm ‖v‖X = (
∫
Ω |Ev|r) 1

r and
‖q‖M = (

∫
Ω |q|r′

)
1
r′ , respectively. It is easy to see ‖·‖X is an equivalent norm

over X. We also denote T′ and X′ the dual space of T and X, respectively,
and 〈, 〉 the dual multiple between X and X′. For 1 < r < 2, we must modify
the definition of X and define X1 = X ∩ [H1

0 (Ω)]N , but we still denote it as
X for simplicity .

Some progress has been achieved in the finite element approximation of
this problem. In 1992, Baranger, et al. [2] gave the first finite element appro-
ximation based upon a special case of the following variational formulation
with α = 1. However, abstract error bounds they obtained are µ-dependent;
i.e, the error bounds are deteriorated as the Newtonian viscosity approaches
zero. Furthermore, no finite element space pair is available. Meanwhile, the
continuous approximation for the extra stress is widely used in engineer lite-
ratures; however, a fairly large finite element space is needed to achieve this
goal ([9, 20]) that would cause an extra cost and lose the accuracy. Recently,
the so-called EVSS and its modification [8] are proposed to attack this pro-
blem, but it needs an extra variable that would increase the cost and even
seriously it would lead to unsymmetric algebraic systems.

Below a new variational formulation ([1, 13]) is proposed to solve the
above problems. Some operators are needed to introduce our method:

B : X → X′, B(u) = 2η(Eq(u))Eu,

Hα : T × X × M → T′ × X′ × M ′,
l : T × X × M → T′ × X′ × M ′,
x = (σ,u, p), y = (τ,v, q),
(Hα(x),y) = α(A(σ), τ) − α(τ, Eu) + α(σ, Eu) + (1 − α)(B(u), Ev)

+2µ(Eu, Ev) − (p, divv) + (q, divu), α ∈ [0, 1],
< l,y >=< f ,v > .

We define the problem: Problem H. Find x ∈ T × X × M such that

(Hα(x),y) =< l,y > ∀y ∈ T × X × M, ∀α ∈ [0, 1].

It can be cast into the saddle point problem: Problem H. Find x ∈
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T × X × M such that

α(A(σ), τ) − α(τ, Eu) = 0 ∀τ ∈ T,

α(σ, Ev) + (1 − α)(B(u), Ev) + 2µ(Eu, Ev)
−(p, divv) =< f ,v > ∀v ∈ X,

(divu, q) = 0 ∀q ∈ M, α ∈ [0, 1].

When α equals 1 or 0, Problem H degenerates to the problem which
has been discussed in [5, 6], or the model discussed in the next section,
respectively. We only consider the case α ∈ (0, 1) in this section.

Based on the classic theory of a mixed variational problem (see [3] for the
linear case and [19] the for nonlinear case), the basic vehicle for the analysis
of Problem H is the following two inequalities, which concern the monotony
and continuity properties of A(σ).

Though the explicit formula for A(σ) is not available when η = ηc, we
are still able to prove the monotony and continuity properties of A(σ) in this
case.

Theorem 2.1 ([14]) There exists a constant C independent of σ and τ such
that, for any δ ≥ 0,

(A(σ) − A(τ), σ − τ) ≥ C|σ − τ |2+δ(1 + |σ| + |τ |)r′−2−δ,

|A(σ) − A(τ)| ≤ C|σ − τ |1−δ(1 + |σ| + |τ |)r′−2+δ.

The proof of these inequalities is tremendously long since in this case
the explicit form of A(σ) is unknown. The baisc idea in our proof is the
prolongation trick and the application of the known results for A(σ) when
η = ηp.

We assume that the triangulation Ch is a regular partition of Ω; the quasi-
uniformity of Ch is not necessary unless we state it clearly. Let Th, Xh, and
Mh be the finite element space: Th ∈ T, Xh ∈ X, and Mh ∈ M .

Problem Hh. Find xh = (σh,uh, ph) ∈ Th × Xh × Mh such that

(Hα(xh),y) =< l,y > ∀y ∈ Th × Xh × M, ∀α ∈ (0, 1).

The well-posedness of Problem Hh depends heavily on the B-B inequality

∃ βh(r) > 0, inf
q∈Mh

sup
vh∈Xh

(divvh, q)
‖vh‖X‖q‖M

≥ βh(r).

Choosing Xh and Mh satisfy the above B-B inequality is a delicate task,
though there are many examples for r = 2 (see [10] and [3] for a review).
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Nevertheless, there exist far fewer examples for the case r 6= 2. In [16], a
general criterion is given and exploited to prove that almost all the stable
pairs for the case r = 2 is also stable for the case r 6= 2.

Remark 2.1 Note that the B-B inequality for (σ, u) and (σh,uh) is no longer
needed either for Problem H or for Problem Hh. An enhanced K-ellipticity
is introduced in a natural, reasonable and unifying way. It is known that
there are many finite element space pairs satisfying the B-B inequality eit-
her for (σ, u) or for (u, p), but they do not satisfy the two B-B inequalities
simultaneously [18].

To derive error bounds, we adopt the abstract quasi-norm introduced in
[6], which is very useful. Let (σ,u) ∈ T × X be the solution of Problem (H).
Then for (τ,v) ∈ T × X, we define the quasi-norms

|τ |ρ′
r′ =

∫
Ω |τ |2(θ + |σ| + |τ |)r′−2, ρ′ = max(2, r′),

|Ev|ρr =
∫
Ω |Ev|2(θ + |Eu| + |Ev|)r′−2, ρ = max(2, r).

If the usual approximation properties for the finite element spaces Th, Xh,
and Mh is assumed and the B-B inequality hlods, then we have the following
error bounds.

Define κ ∈ [r, r+(2−r)θ] for r ∈ (1, 2] and κ ∈ [r, r+(r−2)θ] for r ∈ (1, 2]
below.

Theorem 2.2 Let α ∈ (0, 1) and (σh, uh) ∈ Th × Vh be the unique solution
of Problem Hh.

(i) If r ∈ (1, 2], we have

‖σ − σh‖T ≤ Chk κ
r′ , ‖u − uh‖1,r + ‖u − uh‖1,2 ≤ Ch

kκ
2 .

In particular, when θ = 1, we even have ‖σ − σh‖L2 ≤ C1h
k.

(ii) If r ∈ [2,∞), we have

‖σ − σh‖T ≤ Ch
kκ′
2 , ‖u − uh‖1,r ≤ Ch

kκ′
r .

When θ = 1, we even have

‖u − uh‖1,2 ≤ Chk, ‖σ − σh‖L2 ≤ Ch
kκ′
2 .

(iii) Furthermore, if the mesh is quasi-uniformity, then

‖p − ph‖Lν′ ≤ Cζ, r ∈ (1, 2],

ζ = min (µ
1
2 h

kκ
2 +N( 1

2 − 1
κ ), hk(κ−1)),

‖p − ph‖Lν′ ≤ Ch
kκ′
2 , r ∈ [2,∞).

(2.1)
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Remark 2.2 When r ∈ (1, 2], the error bound (2.1) for the pressure is de-
teriorated. We find that the deterioration happens only in the limiting cases:
(1) N = 2, k = 1, (2) N = 3, k = 1, (3)N = 3, k = 2(r ∈ (1, 3

2 )). If we
assume µ = h( N

r −k)(2−r) in these three cases, the accuracy can be recovered.
In fact, this kind of assumption on µ is realistic when µ is very small. Re-
calling that in this case the proper Sobolev space for the pressure is L2

0(Ω),
we only need to derive error bounds in L2

0(Ω). Since the norm on L2
0(Ω)

is weaker than that in Lr′
0 (Ω) in the present situation, we can expect to get

µ-independent error bounds; it is just the case.

Corollary 2.1 With the same assumptions as in case (iii) of Theorem 2.2,
we have

‖p − ph‖L2 ≤ Chk(r−1), θ = 0, ‖p − ph‖L2 ≤ Chk, θ = 1.

Exploiting the special structure of our quasi-norm, we can get some error
bounds with respect to stronger norm (see [14]).

3 Wilson Element for Non-newtonian Flow

In 1995, Reddy and Simo [17] investigated the stability property of the en-
hanced strain method, which is identical to the Wilson element method under
uniform square meshes. More recently, Zhang [24] has established the stabi-
lity of the Wilson element and its variants [23] for the incompressible elastic
problem over an arbitrary quadrilateral mesh with a minor modification of
the original variational formulation. In [17], the enhanced strain oriented ele-
ment has been subject to a severe numerical test, which indicated that such
kind of element performs very well even on relatively coarse mesh. Therefore,
it is worthwhile to study the Wilson element in the present context.

In this section, we study the convergence behavior of the enhanced strain
oriented Wilson element for Problem H with α = 0, with or without a modi-
fication on the variational formulation. We show that the same accuracy can
be achieved compared to the conforming bilinear element for the variational
formulation with a minor modification, and under the bi-section condition
[21], the same assertion holds for the variational formulation without a mo-
dification.

The Wilson nonconforming finite element space [23] is

{v ∈ [L2(Ω)]2 | v̂ = v ◦ FK ∈ P(K̂) ∀K ∈ Ch},
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where [Q1(K̂)]2 ⊂ P(K̂) ⊂ [P2(K̂)]2. We write P(K̂) = [Q1(K̂)]2 + B(K̂),
where B(K̂) contains the nonconforming part:

B(K̂) = Span(ξ2 − 1, η2 − 1)2.

We denote the Wilson nonconforming element space as Xh and the P1

conforming element space as Mh, which is used for approximating the velocity
and pressure, respectively. Xh can be decomposed into the conforming part
Vh and the nonconforming part Bh:

Vh= {vc ∈ X | v̂c = vc ◦ FK ∈ [Q1(K̂)]2 ∀K ∈ Ch},

Bh= {vb ∈ [Lr(Ω)]2 | v̂b = vb ◦ FK ∈ BK ∀K ∈ Ch}.

Define the semi-norm

‖v‖h = (
∑

K∈Ch

|v|r1,r,K)
1
r = (

∑
K∈Ch

|v1|r1,r,K +
∑

K∈Ch

|v2|r1,r,K)
1
r .

We list some geometric properties of an arbitrary quadrilateral mesh [10]:

xk = a0 + a1ξ + a2η + a12ξη, yk = b0 + b1ξ + b2η + b12ξη.

DFK(ξ, η) =

(
a1 + a12η a2 + a12ξ

b1 + b12η b2 + b12ξ

)
,

and the Jacobian of FK is JK(ξ, η) = det(DFK) = JK
0 + JK

1 ξ + JK
2 η, where

JK
0 = a1b2 − a2b1, JK

1 = a1b12 − a12b1, JK
2 = a12b1 − a2b12. Denote the

inverse of FK by F−1
K . Then

(DFK)−1(ξ, η) =
1

JK(ξ, η)

(
b2 + b12ξ −a2 − a12ξ

−b1 − b12η a1 + a12η

)
.

With these notation, for any v ∈ W 1,r(Ω) we define ∂̃v
∂x , ∂̃v

∂y as follows:

JK
∂̃v
∂x= ∂yK

∂η (0, 0)∂v̂
∂ξ − ∂yK

∂ξ (0, 0) ∂̃v̂
∂η = b2

∂v̂
∂ξ − b1

∂̃v̂
∂η ,

JK
∂̃v
∂y = −∂xK

∂η (0, 0)∂v̂
∂ξ + ∂yK

∂ξ (0, 0)∂v̂
∂η = −a2

∂v̂
∂ξ + a1

∂v̂
∂η .

We define the modified divergence operator by

d̃ivv =
∂̃v1

∂x
+

∂̃v2

∂y
,

and
[B(u), Ev]h= (A(uc), Evc)h + (A(ub), Evb))h,

[divu, p]h = (divuc, p) + (d̃ivub, p)h, [f ,v]h = (f ,vc).
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Problem Hh. Find (uh, ph) ∈ Xh × Mh such that

[A(uh), Ev]h − [divv, ph]h = [f ,v]h ∀v ∈ Xh,

[divuh, q]h = 0 ∀q ∈ Mh.

To get the well-posedness of Problem Hh, we need the following lemmas.

Lemma 3.1 ([15])

C1(|vc|1,r + ‖vb‖h) ≤ ‖v‖h ≤ C2(|vc|1,r + ‖vb‖h) ∀v ∈ Xh,

‖vb‖0,r ≤ Ch‖vb‖h ∀v ∈ Xh.

This lemma can be proved by a combination of scaling trick and the
equivalent norm theorem in finite dimensional spaces.

Lemma 3.2 ([15]) The discrete Korn inequality

‖v‖h ≤ C‖Ev‖0,r ∀v ∈ Xh,

and the B-B inequality hold

∃βh(r) > 0, inf
q∈Mh

sup
v∈Xh

[divv, q]
‖v‖h‖q‖M

≥ βh(r).

The proof of this B-B inequality is long and technical; we refer to [15] for
more details.

Theorem 3.1 If (uh, ph) ∈ Xh × Mh is the unique solution of (Hh), then
i) for r ∈ (1, 2], we have

‖u − uh‖h ≤ Ch
κ
2 , ‖p − ph‖M ≤ Chκ−1,

ii) for r ∈ [2,∞), we have

‖u − uh‖h ≤ Ch
1

κ−1 , ‖p − ph‖M ≤ Ch
κ′
2 .

When θ = 1, we even have

‖u − uh‖1,2 ≤ Ch
κ
2 .

Corollary 3.1 The nonconforming part of the approximate solution uh ∈
Xh tends to zero with the estimates

‖ub
h‖0,r + h‖ub

h‖h ≤ Ch1+ κ
2 ∀r ∈ (1, 2],

‖ub
h‖0,r + h‖ub

h‖h ≤ Ch1+ 1
κ−1 ∀r ∈ (2,∞).

Furthermore,

‖u − uc
h‖h ≤ Ch

κ
2 ∀r ∈ (1, 2], ‖u − uc

h‖h ≤ Ch
1

κ−1 ∀r ∈ (2,∞).
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As for the variational formulation without a modification, we only need
the bi-section condition (see [21]):

Bisection condition. The distance dK between the midpoints of two
diagonals of K ∈ Ch is of order O(h2

K) uniformly for all elements K as h → 0.
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Numerical Simulation of Compositional Fluid
Flow in Porous Media

Guan Qin Hong Wang Richard E. Ewing
Magne S. Espedal

Abstract

A new sequential solution method with selectively chosen primary
variables is developed for modeling the enhanced oil recovery proces-
ses. A mixed finite element method (MFEM) is used to solve one
phase pressure and pseudo total-volumetric velocity simultaneously.
An Eulerian-Lagrangian localized adjoint method (ELLAM) is used to
solve each transport equations. Computational results for two- and
three-phase multi-component fluid flow occurring in enhanced oil reco-
very processes are presented, which show the strength of the method.

KEYWORDS: compositional flow, mixed finite element method, Eulerian-
Lagrangian localized adjoint method

1 Introduction

The objective of reservoir simulation is to understand the complex chemical,
physical, and fluid flow processes occurring in a petroleum reservoir suffi-
ciently well to be able to optimize hydrocarbon recovery. To do this, one
must be able to predict the reservoir performance under various exploita-
tion schemes. In many enhanced oil recovery processes, some chemicals are
injected into the reservoir to mobilize the residual oil trapped in the re-
servoir rocks. Thus, two or more fluids can flow in an immiscible fashion
at certain times and in a miscible manner at other times. Different com-
positional models have been developed to model accurately these processes
by characterizing the composition of reservoir fluid using a finite number of
components [1, 2, 14], leading to strongly coupled systems of nonlinear par-
tial differential equations (PDEs) and constraining equations. The governing
PDEs are basically of an advection/diffusion type with advection being the
dominant process. Although diffusion or dispersion is a small phenomenon

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 232–243, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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relative to advection, it is important for miscible flow regimes and may at
times describe important capillary pressure effects in the immiscible flows.
The constraining equations provide further information on the distribution
of mass for each individual component in different phases. In general, they
are strongly nonlinear, implicit functions of pressure and mole fractions for
each component in different phases. Consequently, extremely large number
of PDEs and unknown variables are involved.

The combination of strong nonlinearities and close couplings between the
equations and constraints cause severe numerical difficulties in the solution
of the systems. Due to the enormous size of many field-scale applications,
these equations cannot be solved in a fully-coupled, fully-implicit fashion,
and some linearization techniques must be used to obtain the numerical so-
lution. However, a blind linearization with little regard to the properties of
the equations or the solutions can result in extremely large, ill-conditioned,
nonlinear systems; the accurate solution of these equations can be extremely
difficult and expensive. Choices of implicitness and decoupling of the equati-
ons must be analyzed and treated with great care for these difficult problems.
Secondly, quite large grid-spacings must be used in the discretization of PDEs
due to the enormous size and complexities of the problems. The use of large
grid-spacings in space-centered finite difference methods (FDMs) and finite
element methods (FEMs) often yield numerical solutions with excessive os-
cillations. On the other hand, upwind FDM and Petrov-Galerkin FEM can
produce numerical solutions with severe numerical dispersion, and spurious
effects related to the orientation of the grid [8, 15].

The ELLAM was originally introduced by Celia, Russell, Herrera, and
Ewing for the solution of (one-dimensional constant-coefficient) advection-
diffusion PDEs in a mass conservative manner [3]. It overcomes the prin-
cipal shortcomings of many previous characteristic methods while maintai-
ning their numerical advantages. Subsequently, ELLAM schemes have been
successfully applied to linear transport PDEs, multi-component fluid flow
problems in compressible media with wells, and many other problems (see
[15, 16] and the references therein). In this paper we develop a numerical me-
thod for compositional flow by utilizing the basic properties of the flow more
effectively. By choosing the primary variables properly, we ease the coupling
and nonlinearity of the system. We then apply a sequential procedure to
linearize and decouple the coupled system, and use an ELLAM scheme to
solve each linearized transport equation and an MFEM to solve one phase
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pressure and pseudo total-volumetric velocity simultaneously. Numerical re-
sults for two- and three-phase multi-component flow problems are presented,
which show the strength of the method.

2 A Compositional Model

A compositional model is presented under the following assumptions [1, 2, 14]:

(i) The reservoir temperature is constant.

(ii) There is no mass exchange between the water phase and the oil and
gas phases.

(iii) The water and rock are incompressible, which implies that the density
ρw of the water phase is constant and that the porosity φ of the rock
is only a function of spatial variables.

(iv) The viscosity µw of the water phase is constant.

Since there exists mass exchange between phases, mass is not conserved
within each phase. Nevertheless, the total mass of each component is conser-
ved, and the corresponding mass conservation can be described by

φ
∂mw

∂t
+ ∇ ·

(
uw

vw
mw

)
= qw, (2.1)

φ
∂mi

∂t
+ ∇ ·

(
uo

vo
mi

o +
ug

vg
mi

g

)
= qi, i = 1, . . . , N. (2.2)

Here N is the number of hydrocarbon components. The superscript and the
subscript refer to the component and phase indices, respectively. In Eqs. (2.1)
and (2.2), the nomenclature is such that mw (or mi

o or mi
g) represents the

moles of the corresponding component per pore volume; mi = mi
o +mi

g is the
overall moles of component i; uw, uo and ug are the phase velocities given by
Eqs. (2.4) below; vw, vo and vg are the ratios of the water, oil and gas phase
volume to the pore volume, respectively; qw and qi are the mass flow rate of
water and the ith component. Under the assumption that the pore volume
of porous media is fully filled with fluids, the following volumetric constraint
holds [14]

vT = vw + vo + vg = 1. (2.3)
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The following multi-phase Darcy’s law gives the relations between the
phase velocities uw, uo and ug and the phase pressures pw, po and pg:

uα = −K
krα

µα

(
∇pα − ραgc∇z

)
, α = w, o, g. (2.4)

In Eq. (2.4), K is the absolute permeability of rock which may be a full tensor
for anisotropic and heterogeneous porous media. krw, kro and krg are the
relative permeabilities of rock that are functions of saturations. µw, µo and
µg (or ρw, ρo and ρg) are the viscosities (densities) of the fluid where µw (or
ρw) is constant and µo and µg (or ρo and ρg) are the functions of pressure and
composition of hydrocarbon. λw = krw/µw, λo = kro/µo and λg = krg/µg

are the phase mobilities. gc is gravity acceleration.
In addition, the nonlinear PDEs presented above are coupled with a com-

plex phase package that describes the relative phase equilibrium for a given
pressure-volume-temperature through the equation of state (e.g., the Peng-
Robinson equation of state).

Eqs. (2.1)–(2.4) form a strongly coupled system of nonlinear PDEs and
constraints. By the Gibbs phase rule one concludes that the system is uni-
quely determined by N + 2 extensive variables, which are called primary
variables [1]. Other variables can be expressed as functions of these varia-
bles. To solve this system efficiently, one should choose the primary variables
carefully based on all the inherent physical and computational properties.
We choose the first N + 1 primary variables as in many papers [1, 2, 4, 14],
which are the pressure of oil phase p, the overall mass per pore volume of the
hydrocarbon components mi (i = 1, . . . , N), and the water saturation sw.

3 A Sequential Solution Method

3.1 An MFEM for the Pressure and Total Velocity

Notice that vT = vT (p, sw, m1, . . . , mN ) is a function of p, sw, and m1, . . . , mN .
If one differentiates the constraint equation (2.3) with respect to t and repla-
ces ∂sw/∂t and ∂mi/∂t by Eqs. (2.1) and (2.2) incorporated with the Darcy’s
law (2.4), one obtains the following pressure equation [1, 14]:

βT
∂p

∂t
− K

[
N∑

i=1

∂vT

∂mi
∇ ·
(

mi
okro

voµo
+

mi
gkrg

vgµg

)
∇ +

∂vT

∂sw
∇ ·
(

krw

µw

)
∇
]

p = rp,

(3.1)
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where p is the pressure of the oil phase, βT = −φ(∂vT /∂p) is the total fluid
compressibility that is positive because ∂vT /∂p is negative, and rp is the
volumetric discrepancy error.

Eq. (3.1) is a parabolic PDE with respect to the pressure p and can be
solved by FDMs, FEMs, or finite volume methods (FVMs). After the nume-
rical solution ph is obtained, one computes the numerical phase velocities uh

w,
uh

o and uh
g by substituting ph into Eq. (2.4) and using the capillary pressure

curves. However, when the subsurface geology is strongly heterogeneous, the
absolute permeability K of the rock can be very rough. In this case the exact
solution p of Eq. (3.1) is not necessarily smooth and so the numerical solu-
tion ph might not be accurate. As a result, the numerical Darcy’s velocities
uh

w, uh
o , and uh

g obtained from Eq. (2.4) by numerically differentiating ph and
multiplying ph by a rough coefficient k/µ are even less accurate. This, in
turn, affects the accuracy of the numerical approximations to other primary
variables when uh

w, uh
o and uh

g are put into Eqs. (2.1) and (2.2).
While the pressure p may be rough, the total Darcy’s velocity u = uw +

uo + ug is usually smooth. Moreover, it is the phase velocities instead of the
pressure that are needed in Eqs. (2.1) and (2.2). Hence, we adopt an MFEM
to solve the following system of first-order PDEs for the total Darcy’s velocity
u and the pressure p simultaneously [12, 14]:

dp

dt
+ ∇ · u = Rp, u + λT K∇p = Ru, (3.2)

where Rp and Ru involve the temporal and spatial derivatives of other pri-
mary unknowns, but not u and p. λT = λw + λo + λg is the total mobility.
The operator d/dt is defined by

d

dt
= βT

∂

∂t
+

N∑
i=1

∇
(

∂vT

∂mi

)
·
(

mi
okro

voµo
+

mi
gkrg

vgµg

)
∇ · . (3.3)

After the total Darcy’s velocity u is obtained from equation (3.2), the phase
velocities uw, uo and ug can be computed by (with α =water, oil, and gas)

uα = fαu + fαK
∑
j 6=α

λj

[
∇(pcjo − pcαo) − (ρj − ρα)gc∇z

]
, (3.4)

where fα = λα/λT is the fractional flow function and pcjo (or pcαo) is the
capillary pressure between phase j (or phase α) and the oil phase.

An MFEM for Eqs. (3.2) can be written as follows: find (u, p) ∈ Vh ×Wh,
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for any t ∈ [0, T ], such that
(dp

dt
, ζ
)

+
(
∇ · u, ζ

)
=

(
Rp, ζ

)
∀ζ ∈ Wh, t ∈ [0, T ],(

(λT K)−1u, η
)

−
(
p, ∇ · η

)
=

(
Ruv, η

)
∀η ∈ Vh, t ∈ [0, T ].

(3.5)

Here Vh and Wh are the well-known Raviart-Thomas spaces [5, 13].

3.2 An ELLAM for the Transport Equations

Substituting the phase velocities uw, uo, and ug obtained from Eq. (3.4) into
Eq. (2.1) and using the fact that the water phase is incompressible, we rewrite
Eq. (2.1) as follows:

φ
∂sw

∂t
+ ∇ ·

(
ufw(sw)

)
− ∇ ·

(
Dw∇sw

)
= Rw, (3.6)

with Rw given by

Rw = ∇ ·
( N∑

i=1

Di∇mi
)

+ qw. (3.7)

Likewise, we can rewrite Eq. (2.2) as

φ
∂mi

∂t
+ ∇ ·

(
V imi

)
− ∇ ·

(
Di∇mi

)
= Ri

m, i = 1, . . . , N, (3.8)

where V i and Ri
m are as follows:

V i =

[(
mi

o

mi

)(
fo

vo

)
+

(
mi

g

mi

)(
fg

vg

)]
u, (3.9)

Ri
m = qi + ∇ ·

( N∑
j=1;j 6=i

Dj∇mj
)
. (3.10)

The analysis in [6, 12] shows that the advection part of Eq. (3.6) is least
coupled with system (3.8) and the coupling among the equations in system
(3.8) is relatively weak. Therefore, in Eqs. (3.6) and (3.8) we move the off-
diagonal diffusion terms to the right-hand side to decouple these equations.
In the next subsection, we present a sequential solution method to solve the
nonlinear advection-diffusion equation (3.6) for the water saturation sw, and
to solve the decoupled and linearized advection-diffusion equations (3.8) for
the total moles mi of each component.

Notice that V i is in fact the barycentric velocity of the ith component
in the multi-phase and multicomponent mixture. It depends on both the
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process of fluid flow and the phase equilibrium. The physical interpretation
of Eqs. (3.8) is that a particle of component i in a multi-phase fluid is traveling
with the velocity V i while simultaneously diffusing at the rate controlled by
Di. The coefficients of diffusion terms, Dw and Di, come from the capillary
pressure effects. In many cases, capillary pressure effects are small and the
advection terms dominate these equations. Consequently, the exact solutions
of the equations are usually smooth outside some small regions within which
the solutions have sharp fronts that need to be resolved accurately without
oscillations or numerical dispersions. Because of the numerical advantages
of ELLAM approach, we solve each linearized transport equation in (3.8) by
using an ELLAM scheme [3, 16]

∫
Ω

φmi(·, tj)w(·, tj)dx + ∆t

∫
Ω

∇w(·, tj)Di∇mi(·, tj)dx

=
∫

Ω
φmi(·, tj−1)w(·, t+j−1)dx + ∆t

∫
Ω

Ri
mw(·, tj)dx,

(3.11)

where w(x, t+j−1) = limt→t+
j−1

w(x, t). We refer readers to [15, 16] for discus-
sions on implementational issues.

3.3 A Sequential Solution Procedure

The system of Eqs. (3.2), (3.6), and (3.8) is a large, time-dependent, strongly
coupled system of nonlinear PDEs coupled with the nonlinear phase equili-
brium constraints. We present a time-marching, sequential-implicit algorithm
to decouple the computations of phase equilibrium from the solutions of the
system at each time step. The algorithm can be outlined as follows:

1. At the time t = 0, the pressure p, water saturation sw, and moles
m1, . . . , mN of the hydrocarbon components are known from the given
initial conditions for the model.

2. Apply the phase package to determine the phase distributions m1
o, . . . , m

N
o

and m1
g, . . . , m

N
g based on m1, . . . , mN .

3. Compute the phase viscosities µo and µg (recall that µw is assumed
to be constant) from the empirical correlation [10] and compute the
densities ρo and ρg from the equation of state (e.g. Peng-Robinson).

4. Calculate the ratios vo and vg of phase volume to pore volume vo =
mo/ρo and vg = mg/ρg, where mo = m1

o + . . . + mN
o and mg = m1

g +
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. . .+mN
g . Then, calculate the saturations so and sg by so = vo/vT and

sg = vg/vT [14].

5. Compute the relative permeabilities after the saturations are obtained.
Steps 2–5 yield the coefficients for equations (3.2), (3.6) and (3.8). One
then proceeds to the next time step.

6. Apply an ELLAM [9] combined with the operator-splitting techniques
to solve the nonlinear advection-diffusion PDE (3.6) for sw, and the
linearized transport PDEs (3.8) for m1, . . . , mN . Here, in the coeffi-
cients of Eqs. (3.6) and (3.8), the values of the corresponding variables
are computed based on their values at the previous time step.

7. Substitute the values of sw and m1, . . . , mN at the current time step
into equation (3.2), and apply an MFEM to solve Eq. (3.2) for the
pressure p and the total velocity u at the current time step.

8. If necessary, perform some iterations between Eqs. (3.2), (3.6), (3.8)
and the nonlinear constraints at the current time step.

9. Go back to Step 2 to update the coefficients at the current time step
and repeat the above processes until one finally comes to time t = T .

4 Numerical Simulations

We use the method to simulate a 1D, three-phase, multi-component flow
with complex in situ phase behavior. The reservoir is 250 feet in length with
the sectional area of 50 × 100(feet2). The porosity of the reservoir is 20%.
The initial reservoir pressure is 2000 psi and the reservoir temperature is 160
F. The permeability of the reservoir is 2 Darcy, and the analytical relative
permeabilities are given by the modified Corey’s model

krw = 0.1s̄3
w, kro = s̄2.5

o [1 − (1 − s̄o)3], krg = s̄2.5
g [1 − (1 − s̄g)2], (4.1)

where the normalized phase saturations are defined as follows

s̄w =
sw − swr

1 − swr − sor
, s̄o =

so − sor

1 − swr − sor
, s̄g =

sg − sgr

1 − swr − sor − sgr
. (4.2)

The residual saturations of each phases are

swr = 0.35, sor = 0.25, sgr = 0. (4.3)
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Initially, the reservoir is filled with 20% water saturation and 80% undersa-
turated oil saturation. Water phase is incompressible. The molar density of
water phase is 3.467 lb − mole/ft3 and the viscosity is 0.5 cp (centipoise).
The oil phase is composed of 20% methane (light hydrocarbon component),
20% butane (medium hydrocarbon component), and 60% decane (heavy hy-
drocarbon component). The Peng-Robinson equation of state [11] is used
in the flash calculations. The critical properties of these hydrocarbon com-
ponents are listed in Table 1. The molar densities and viscosities of the
hydrocarbon fluid are computed by the equation of state and Lohrenz rule
[10], respectively.

pc(psi) Tc (R0) Vc wt ω

Methane 673.1 343.3 1.59 16.04 0.014
Buthane 550.7 765.4 4.08 58.12 0.193
Decane 306.0 1115 9.66 142.3 0.489

Table 1. Critical Properties

We simulate an injection of 95% water and 5% hydrocarbon mixture (45%
methane, 45% butane, and 10% decane) into the reservoir and the total
injection rate is 1000 lb-mole per day. The water phase is mobilized by the
injecting water, leading to a three-phase fluid flow process. 50 cells were
used in space. The size of time steps is selected according to the time-
step restrictions that are the maximum changes in (1) pressure, (2) overall
composition of the hydrocarbon components, and (3) the phase saturations
tolerated at each element. Since the initial guess for the flash calculations is
given following the characteristics by the ELLAM scheme (3.10), restriction
(2) is relaxed. The left and right figures in Fig. 1 show the computed water
and gas saturations vs at 50 and 150 days, respectively. Since water is the
main stream of the injecting fluid, a water saturation front is formed and
propagated as time evolves (at about 70 feet at 50 days and at about 170
feet at 150 days). Because the reservoir pressure is increased due to the
injection, the resident hydrocarbon fluid is vaporized to form a gas zone. For
more numerical results, see [6].

5 Summary

The mathematical model for compositional flow involves a strongly coupled
system of a large number of nonlinear PDEs and algebraic equations. Due
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Figure 1: The profiles of the simulation at 50 and 150 days.

to the enormous size of the petroleum field applications, it is very expensive
to solve the system in a fully-coupled and fully-implicit fashion in general.
To derive a stable algorithm for solving the compositional system, we need
to derive a proper form for the governing equations to alleviate the nonlinea-
rities and couplings. Choices of primary variables, the proper forms of the
equations to be solved, and implicitness and decoupling of the equations are
of essential importance numerical simulations.

With a proper choice of primary variables, we develop a sequential solu-
tion procedure for a compositional model: (1) We use an MFEM to solve the
oil phase pressure and the pseudo-total volumetric velocity. Instead of calcu-
lating the phase velocities, we compute the barycentric velocities and obtain
fairly accurate and smooth approximations. (2) We decouple and linearize
the coupled nonlinear transport PDEs by using the barycentric velocities. (3)
We use an ELLAM scheme to solve each decoupled and linearized transport
PDEs, which yields accurate numerical solutions that are free of oscillations
and numerical dispersion and permits the use of large time steps. Moreover,
the utilization of the ELLAM scheme generates an accurate initial guess and
considerably improves the efficiency for the flash calculations, which in turn
alleviates the restriction on time step size bounded by the maximum relative
changes in the overall composition of the hydrocarbon components tolerated
at each element. These results show the strong potential of the method.
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Parallelization of a Compositional Reservoir
Simulator

Hilde Reme Geir Åge Øye Magne S. Espedal
Gunnar E. Fladmark

Abstract

A finite volume dicretization has been used to solve compositional
flow in porous media. Secondary migration in fractured rocks has been
the main motivation for the work. Multipoint flux approximation has
been implemented and adaptive local grid refinement, based on domain
decomposition, is used at fractures and faults. The parallelization me-
thod, which is described in this paper, strongly promotes code reuse
and gives a very high level of parallelization despite low implemen-
tation costs. The programming framework is also portable to other
platforms or other applications. We have presented computer expe-
riments to examine the parallel efficiency of the implemented parallel
simulator with respect to scalability and speedup.

KEYWORDS: porous media, multipoint flux approximation, domain decom-
position, parallelization

1 Introduction

In this paper we are going to discuss some computational issues conected
to flow in fractured porous media. The simulation of secondary migration
[14, 16] has been the main motivation for the work [12, 18]. Secondary
migration is the movement of hydrocarbons through a carrier bed/reservoir
rock into a trap. In order to be able to simulate such a large and complex
process as secondary oil migration processes, the model has to be simplified.

Our model does not allow dynamical changes of the discontinuities. This
means that the fractures and faults may not open and close frequently. The
dynamical geometry variation, which exists in the model, is in the z-direction.
Due to the difference in the overburden pressure and the pore pressure we
may have a compaction of the rock or of the control volumes in the numerical
discretization. To represent discontinuities, local grid refinement is used.

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 244–266, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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For simplicity, only regular grid cells are used. The mathematical model
describes compositional three-phase flow. Phase exchange between oil and
gas and visa versa is allowed. In addition, the model includes thermodynamic
equations, assuming equilibrium. The numerical model uses a block-centered
finite difference discretization technique. With the use of this technique all
the unknowns are located in the center of the control volume. Most of the
existing models use a simple two-point flux approximation (TPFA) for the
flux calculation. This may be incorrect if there exists a discontinuity in the
permeability or if the principal permeability directions are not along any of
the grid directions. The two-point flux approximation method is also used in
the model, but in addition we have the possibility to use a multi-point flux
approximation (MPFA) method if necessary. The computer code is highly
object oriented and it is written in C++. Normally, the C++ programming
language is computationally slower than the FORTRAN 90 programming
language. However, it is often much easier to parallelize an object oriented
C++ program than a FORTRAN 90 program. Another advantage when
using C++ is that it is easy to add/delete new/old objects and classes.

2 Compositional Flow Model

The mathematical model includes mass conservation, energy conservation, a
generalization of the Darcy low, equations of state, and equilibrium calcula-
tions. The components in the model are the hydrocarbons (c1, c2, ..., cn) and
water. Totally the system includes nc = 1 + n components.

Even though our general simulator (SOM) [12, 18] includes this complex
mathematical model, we have mostly used a simplified version of the model,
named the symmetric Black Oil (SBO) model [11]. The phase calculation in
this model is related to tables for bubble and dew points rather than fugacity
calculations. In addition to allow some of the gas components to be in the
oil phase, the SBO also allows some of the oil components to be in the gas
phase. This means that the SBO model is a generalization of the black oil
model [3]. The SBO model may also handle condensate systems.

The primary variables in both models are the temperature T , the water
pressure pw, and all the molar masses Nν , ν = 1, 2, ..., nc.

The mass conservation of component ν of one chemical species which flows
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through the porous media is given by:

−
∫

CS

~̇mν · d~S =
∂

∂t

∫
CV

mνdV +
∫

CV

qνdV , ν = 1, 2, ..., nc . (2.1)

Here ~̇mν , mν , qν , CV , and CS denote the mass flux of component ν, mass
density of component ν, source/sink density of component ν, control volume,
and interface of the control volume. Let Cνm denote the mass fraction of a
component ν in phase m, m = o, g, w. Then the mass flux and the mass
density of the component ν are respectively given by

~̇mν = Cνgρg~vg + Cνoρo~vo + Cνwρw~vw , ν = 1, 2, ..., nc ,

mν = φp(CνgρgSg + CνoρoSo + CνwρwSw) , ν = 1, 2, ..., nc .

where ρm, Sm, and φ denote mass density of the phase m, saturation of the
phase m, and porosity. The Darcy law for multiphase flow is given by

~vm = −K
∑

k=g,o,w

krmk

µk
(∇pk − γk∇d) , m = g, o, w ,

where K, krmk
, µk, pk, γk, and d denote absolute permeability tensor, genera-

lized relative permeability for coupled multi-phase flow, viscosity of the fluid
phase k, fluid pressure of phase k, specific gravity of fluid phase k, and depth
(positive in the gravity direction). Equation (2.1) gives nc equations (one
for each component), while we have 3nc + 22 unknowns. The first 3nc + 21
unknowns are Cνm, ν = 1, 2, ..., nc, ρm, Sm, pm, µm and krmk

, m, k = g, o, w.
The temperature T is the last unknown. To close the model we need to have
2nc + 22 more independent equations or relations.

We assume that the three phases fill the available pore space, which im-
plies

Sg + So + Sw = 1 . (2.2)

We also know that the sum of the mass fraction, for each phase, has to be
one

nc∑
ν=1

Cνm = 1 , m = g, o, w . (2.3)

The density and viscosity are assumed to be functions of the temperature,
the phase pressure and the mass fraction, while the generalized relative per-
meabilities and the capillary pressures are functions of the temperature and
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the saturations

ρm = ρm(T, pm, C1m, ..., Cncm) , m = g, o, w ,

µm = µm(T, pm, C1m, ..., Cncm) , m = g, o, w ,

krmk
= krmk

(T, Sg, So, Sw) , m, k = g, o, w ,

pg − po = pcgo(T, Sg, So, Sw) ,

po − pw = pcwo(T, Sg, So, Sw) .

(2.4)

As the temperature may vary in time we must include the heat flow equation.
To ensure conservation of energy, the model uses the integral expression

∂

∂t

∫
CV (tn)

(ρu)dV −
∫

CS(tn)
(k∇T ) · d~S = −

∫
CS(tn)

hρ~u · d~S +
∫

CV (tn)
qdV ,

(2.5)
where

ρu =
∑

m=g,o,w

φpSmumρm + urρr(1− φp) ,

hρ~u =
∑

m=g,o,w

hmρm~vm .

where ρm, ρr, um, ur, k, T , and h denote mass density of phase m, mass
density of rock, internal energy of phase m, internal energy of rock, bulk heat
conductivity, temperature, and enthalpy, respectively. Since the movements
in the system are very slow, all the terms including velocity may be neglected.
This is the reason why we have neglected the kinetic energy, the potential
energy, the viscous dissipation in the fluid flow, and the deformation energy
in the solid phase and in the rock. The only mechanical work rate included
is the term related to normal stresses in fluid flow.

Equations (2.2)-(2.5) give 22 new equations, we still need another 2nc

equations to close the model. These equations are given by the assumption
of thermal equilibrium for each time-step. It is convenient to use the Gibbs
function in the thermodynamics of phase equilibrium. The Gibbs function is
defined by

G = U + pV − TS ,

where U , p, V , T , and S denote internal energy, pressure, volume, tempera-
ture, and entrophy.
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2.1 Pressure Equation

The equations given above represent a closed set of equations to determine
all the primary and secondary variables at a new time step. To calculate the
primary variables we have used a sequential IMPEC (implicit pressure and
explicit concentration). The secondary variables are determined by using ex-
perimentally based relationships and ”flash calculations”, which is discussed
in this work. A pressure equation can be derived in several ways. In this
work, however, we have used the volume balance method (VBM) [12, 17, 18]
to obtain the water pressure equation. We define the residual volume R as

R = Vp −
∑

k=g,o,w

Vk ,

where Vp and Vk are the pore volume and the volume of phase k, respectively.
They both depend on the primary variables, stating

Vp = Vp(pw, W ) , Vk = Vk(T, pw, Nk
1 , ..., Nk

nc
) , k = g, o, w ,

where

Nk
ν = Nk

ν (T, pw, N1, ..., Nnc
) , ν = 1, 2, ..., nc and k = g, o, w .

The overburden pressure is given by W = σ + p , where σ and p are the
effective stress and the pore pressure, respectively.

The residual volume is a function depending on time t. To satisfy the
saturation condition (2.2) ∀ t, the residual volume has to vanish ∀ t. From
this we obtain the volume balance

R(t) = 0 ∀ t .

By assuming that we know the residual volume at some time t, denoted R(t),
we are able to find the value for the residual volume at time t+∆t. This can
be done by constructing the truncated Taylor expansion

R(t + ∆t) ≈ R(t) +
dR

dt
∆t = 0 .

If we use the chain rule for partial differentiation on dR
dt , we get

∂R

∂pw

∂pw

∂t
+

nc∑
ν=1

∂R

∂Nν

∂Nν

∂t
= − R

∆t
− ∂R

∂W

∂W

∂t
. (2.6)

The partial derivatives of the residual volume with respect to the primary
variables may be computed from equations of state and thermo-dynamical
equilibrium conditions. Since we assume that the temperature is constant for
this calculation, we do not have to include the term ∂R

∂T
∂T
∂t .
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2.2 Boundary Conditions

Normally, the equations governing the flow of fluids through porous media
are second order partial differential equations. A Robin boundary condition
is the most general type of boundary condition which is used for our problem
and is given by

αu + β
∂u

∂n
= γ .

Here ~n denotes the outward normal direction at some point on the boundary
and α, β, and γ are constants which may be selected. The boundary conditons
can be given explicitly or implicitly [12, 18].

3 Flux Discretization

For the numerical approximation we use a control volume finite difference
block-centered disretization. Each control volume CVi, i = 1, 2, ..., N where
N is the total number of grid cells, represents a fixed cell in the grid. The total
interface for CVi is denoted CSi. We denote the set of grid cells connected
to CVi through a given flux molecule, including the grid itself, as Mi. The
common subset of the interface between CVi and CVj , i 6= j, is denoted
CS(i,j). This means that

CS(i,j) = CSi ∩ CSj and CSi =
ni∑
l=1

CS(i,jl) ,

where ni is the total number of sub-interfaces on CSi and jl is the global
neighbor CVj to CVi which share the local sub-interface l. We then define
Mis

(i,j) as the set of cells which influence the flux molecule for the interface
CS(i,j). The set Mis

(i,j) depends (like the set Mi) on the flux molecule me-
thod. If we use a two-point flux molecule approximation Mis

(i,j) = {i, j} [9],
Mis

(i,j) = {i, j, k, l, ...} for other flux molecule methods. For a multi-point
flux approximation the setMis

(i,j) may contains 18 different cells for an inner
sub-interface [1, 7, 8]. Between Mi andMis

(i,j) we have the relationship

Mi = ∩ni

l=1Mis
(i,jl) .

By use of these definitions we may write a general flux approximation as

f(i,j) = −
∫

CS(i,j)

(λK∇u) · d~S '
∑

q∈Mis
(i,j)

tiquq ,
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where tiq are named the transmissibilities. Note that these transmissibili-
ties include both a solution-dependent part and a geometry-dependent part,
which may be calculated independently. In this work we have consentrate on
the calculation of the geometry-dependent part. For the calculation of the
solution-dependent part we refer to [12, 18].

3.1 The Multi-point Flux Approximations (MPFA)

The easiest way to calculate the geometry-dependent part of the transmis-
sibilities is to use the two-point flux approximation (TPFA) for each sur-
face. With use of this method Mis

(i,j) only contains two cells and is given
by Mis

(i,j) = {i, j}. The TPFA method has been known for a long time and
frequently used in the reservoir simulation literature; see, for instance, [9].

A multi-point flux approximations method has been developed lately [1,
7, 8]. As the name of this method indicates we use more than two points (two
cell centers) to calculate the flux across the interface CS(i,j) to CVi. In two
dimensions Mis

(i,j) includes values from six different cells while the number
of cells in Mis

(i,j) increases to eighteen in three dimensions.

4

1
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D
IV

I II

III

Figure 1: Grid cells with interaction regions in two- and three-dimensions.

When using this method the definition of the interaction region is essen-
tial. Figure 1 shows a sketch of this region in both two and three dimensions.
The MPFA method covers the domain of the differential equations by such
non-overlapping interaction regions. Instead of calculating the transmissibi-
lities for CS(i,j) directly, this method calculates the transmissibilities across
each sub-surface in the interaction region. To calculate the transmissibili-
ties for CS(i,j), the method adds the contributions from the two interaction
regions involved.

For simplicity, we have chosen to present the flux discretization techniques
in two-dimensions. The implementation of these techniques in the SOM
simulator are three-dimensional.
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To calculate the flux fAE
(1,2) across the interface segment AE (see Figure 1),

we may use the approximation

fAE
(1,2) = −

∫
CSAE

(1,2)

(λK∇u) · d~S '
∑

q∈MAE
(1,2)

tAquq =
4∑

i=1

tAiui .

Since the flux must be zero when ui is a constant vector, it follows that∑4
i=1 hAi = 0. There exist several MPFA methods which determine tAi

[1, 7, 8, 12, 18]. The main difference between these methods is where they
require continuity in flux and potential. The O-method requiers continuity
in both flux and potential at the points A, B, C and D, given in Figure 1.
In [12, 18] they propose an improvement of this method, which ensures full
continuity across the interfaces AE, BE, CE, and DE.

3.2 Non-matching Grid Lines and the OSCI-Method

As far as we know, the MPFA method has not yet been given for non-
matching grids in three dimensions. In [2] some two dimensional cases are
shown. In this section we use slave cells to handle this problem in both
two and three dimensions. Figure 2 shows how we implement slave cells

Real cell Slave cellReal cell

Figure 2: Figures show the grid with only real cells, with both real and slave cells
and with the non-overlapping interaction regions between slave cells.

and create non-overlapping interaction regions between these cells. We refer
to this MPFA method as the OSCI-method (O-method with slave cells and
interpolation).
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To create the new slave grid, all the lines from one refinement which touch
another refinement or a coarse cell are extended to the next crossing line (see
Figure 2). This means that one real coarse cell is divided in the number
of fine cells touching the coarse interface. If lines from different refinements
match, slave cells are identical to real cells. Thus, if the real cells create
a non-matching grid, the OSCI-method creates non-overlapping interaction
regions between slave cells. Then this method calculates the transmissibilities
on this non-overlapping slave interaction regions in the same way as the O-
method does across interfaces for matching grids. Note that this technique
does not require regular grid density, but otherwise it is a general technique
that fits all kinds of adaptive LGR.

After we have calculated the slave transmissibilities, an interpolation is
needed. Either we may interpolate these contributions to the real cells or
we may interpolate the quantities in the real cells out to the slave cells. We
have chosen the latter alternative. So far only a linear interpolation has been
carried out, but it should not be a problem to implement higher order and
more accurate interpolation techniques. Since this problem is beyond the
scope of this work, it is left for future work.

For a uniform grid in two dimensions with a homogeneous permeability
tensor K, it has been shown that the OSCI-method creates a second order
method. This is identical to the O-method across interfaces for matching
grids. Another advantage with this technique is that it is quite simple to
implement. The drawback with this method is that it creates non-overlapping
interaction regions between slave cells and not between real cells. Figure 3
shows how we cover a domain by non-overlapping real interaction regions and
non-overlapping slave interaction regions. The O-method and OSCI-method

Figure 3: The domain covered by non-overlapping real interaction regions (grey
regions) and non-overlapping slave interaction regions (red regions).
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have been compared [12, 18] and it turns out that the OSCI method works
well for nonmatching grids.

3.3 Adaptive Use of the TPFA and the MPFA Methods

Based on the differences which exist between a TPFA method and a MPFA
method, it is possible to decide which flux approximation method to use in
different cases. The MPFA method should be used for the cases [7]

• Whenever the medium is anisotropic and non-aligned with the local
frame of reference.

• Whenever non-orthogonal and/or unstructured grids are employed.

• Whenever fine-scale cross-flow upscaling is performed particularly for
cross-bedding.

The OSCI-method may also be used to match different solutions from dif-
ferent domains. Since the convergence of a domain decomposition method
depends strongly on the accuracy of the exchange of information between
different domains, one should expect that a MPFA method improves the
convergence. Thus an improved Mortar method [4] may be developed.

It is only due to the large computational cost that we should avoid to
use am MPFA method in the total domain. Normally, when using a LGR
technique, an MPFA method should be used in the refined regions where the
solution includes large gradients, while a TPFA method should be used in the
coarse domain where no large changes exist. The SOM has the possibility to
combine the two flux approximation methods like this. In an input file the
user has to specify the flux approximation method for each sub-regions. The
only restriction related to this specification is that TPFA method has to be
used between coarse grid cells in a composite domain.

Trying to reduce the large computation time caused by MPFA, a splitting
in the matrix level is suggested in [7]. This paper shows how we may decom-
pose a general full tensor flux into a diagonal tensor flux together with cross
terms. Then, time-split semi-implicit, stable, full tensor flux approximati-
ons are introduced within a general finite volume formalism. The standard
diagonal tensor Jacobi matrix structure may now be retained while ensu-
ring spatial consistency of the discretization. With the use of this M-matrix
flux splitting method for a general full tensor discretization operator, the
computation time is reduced by over 50% for quadrilateral grids.
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4 Local Grid Refinements (LGR)

One of the main objectives in this work has been to implement a LGR in the
SOM framework. In this section we try to describe how we have solved this
problem. Even though the main interest is to use the LGR for fractured and
faulted problems, we have selected a general LGR which also may be used in
conjunction with resolving wells or larger gradients.

In this work we have used a fixed coarse grid and defined refined sub-
domains from a pre-selected set of coarse grid blocks. In many situations,
some care must be taken when constructing the coarse grid. If a large gradient
is located near a coarse grid boundary, the numerical solution is affected. A
dynamic adaptive coarse grid can be favorable in cases where we have large
moving gradients (i.e., a moving front). In these cases, it is important to use
a refined grid in a region containing large gradients. This has been used and
studied in [6]. A fixed coarse grid is natural to use in cases where we try to
resolve the dynamics at larger fractures and faults in addition to wells. If we
know where these objects are located, this information must be used when
constructing the coarse grid. As far as possible, regions with large gradients
must be located inside each coarse block and not on or near the interface
between them.

Based on the discussion above, we could also have used an adaptive LGR
strategy. First, we create the fine grid, including large fractures and faults.
Then the coarse grid could be constructed adaptively. The coarse grid must
depend on the solution and the numerical behavior. The adjustment of the
coarse grid could depend on the information from a first iteration. This
option must be included in further development of the simulator.

There are two main difficulties related to LGR:

• to create the composite grid,

• to store all the data in an efficient and suitable manner.

We have chosen to use the existing coarse grid generator as a starting
point. After we have generated a coarse grid, we determine all the coarse
cells which have to be refined. Then we use a grid generator for each of
prescribed refined subdomains. The gridding can be different in each sub-
domain and the sub-domains can be arbitrary placed in the coarse grid. This
means that we are able to create arbitrary refined domains; see Figure 4.
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There is no global numbering of the geometry variables in this implemen-
tation. The grid generator also produces input files for the lithology mapping
and boundary values mapping for each refined sub-domain. This means that
we can prescribe an independent set of lithologies and boundary values for
each sub-domain and the coarse domain. After we have created the geometry
input files for each refinement and the coarse region, SOM has to be modified
for achieving the use of these files. Since SOM is written in C++, this is done
in an object-oriented framework. By using local numbering on each refined
sub-domain, we can preserve the original regular data-structure for each refi-
ned patch. This means that we can use existing functions for discretization,
linearization and fast linear solver for each refined sub-domain, even if the
composite grid is not regular. This strategy may keep the cost related to the
implementation of a LGR in the SOM framework at a minimum.

It is also possible to use dynamical allocation of new elements in the
different class arrays in C++. This means that it is straightforward to add
or delete refined sub-domains adaptively during the computations. Further
details about the implementation is given in [12, 18].

5 A Composite Grid Solver

Local adaption introduces several design challenges including: grid struc-
tures, error control, efficient linear solvers and parallelism. The conver-
gence rate and the complexity of iterative methods usually deteriorate with a
decreasing size of the smallest mesh size. These small scales may even hinder
direct methods since they determine the condition-number of the discretiza-
tion matrix.

If we can use existing fast solution methods developed on regular grid, on
non-regular composite grids, we have made a large step towards developing
efficient parallel algorithms for solving the same composite problem.

Figure 4: This Figure show how we divide the coarse grid into many refined
no-regular non-matching sub-domains.

We assume that equations (2.5) and (2.6) have been discretized on a
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composite grid as shown in Figure 4. Then we have the linear system to
solve

A~x = ~y, ~x , ~y ∈ RN . (5.1)

Here A is the composite grid Jacobi matrix, ~x and ~y are the composite grid
solution vector and the right hand side vector, respectively. N is the total
number of grid cells in the composite grid.

A global numbering of the nodes for this composite problem would dest-
roy the nice regular banded structure in the matrix. This section describes
an iteration technique that allows to decouple the refined patches and the
underlying coarse grid. This means that the coupling is through the internal
boundary between the coarse and the refined regions. We can then use fast
regular solvers for each refined sub-domain. To attain this, we divide the
composite grid Ω into different disjoint sets; Ωc consist of grid points in the
non-refined region and Ωf =

⋃p
i=1 Ωfi

is the union of all grid points in the
refined sub-domains. Here p is the number of refined sub-domains. After this
partitioning equation (5.1) can be written

[
An

cc An
cf

An
fc An

ff

] [
~xc

~xf

]
=

[
~yc

~yf

]
.

Our solution technique is based upon a two-step method, with a splitting
based on a Galerkin technique. This is a two level domain-decomposition
method, where we have one regular coarse grid and many regular refined sub-
grids. This means that we split the linear equation (5.1) into different regular
sub-problems, corresponding to each sub-domain. A coarse grid operator is
used to handle the communication between the sub-domains. The Galerkin
technique was first introduced in [15]. This technique has later been studied
in [10, 13, 12, 18]

5.1 A Galerkin Composite Grid Solver

The algebraic algorithm, proposed in [10] for solving the linear equation (5.1),
can be formulated as follows. Let Ω̂ denote the grid without any refinement,
i.e. the regular coarse grid Ω0 in Figure 4. Further, let N̂ be the number
of grid blocks in Ω̂ and let Mî = {fine cells within coarse cell number î},
î = 1, 2, ..., N̂ . Defining the local refined sub-domains in this way, means
that we only have one coarse grid block under each refined patch. Let N

be the total number of cells in the composite grid, shown in Figure 4. We
define a basis vector ~Ψî ∈ RN , for the coarse cell î. It consists of only zero
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element, except for unit element at all î ∈Mî, i = 1, 2, ..., N̂ . Let ~x(s) be the
(s) iterate of the composite solution vector ~x. This gives us the function

~z = ~x(s) +
N̂∑

î=1

d̂
(s)
î

~Ψî =
[

~zc

~zf

]
, ~z ∈ RN . (5.2)

Here d̂
(s)
î

, is the î th component of ~̂
d
(s)

on Ω̂. Note that this function would
describe an updated composite solution vector ~z, from the error on the coarse
grid Ω̂. Using ~z as a test-function in a Galerkin formulation, then for each
coarse cell ĵ the equation should be satisfied:

〈~Ψĵ , A~z〉 = 〈~Ψĵ , ~y〉 , ĵ = 1, 2, ..., N̂ ,

here 〈·, ·〉 is the inner product. This would give us a coarse linear system to

solve for ~̂
d
(s)

Â
~̂
d
(s)

= ~̂y,
~̂
d
(s)

, ~̂y ∈ RN̂ , (5.3)

where

âk̂l̂ =
∑

i∈Mk̂

∑
j∈Ml̂

a
k̂i l̂j

and ŷk̂ =
∑

i∈Mk̂

(y
k̂i
−

N∑
r=1

ak̂ir
x(s)

r ).

Here k̂i and l̂i indicate the local cell numbers i and j in the coarse cells k̂ and
ĵ, respectively. Note that if k̂ is not refined, Mk̂ consists of only one coarse

cell. After solving equation (5.3) for ~̂
d
(s)

, we use the definition for ~z from
equation (5.2) to get the new estimate for the composite solution vector

~x(s+1) = ~z.

This means that we choose ~x
(s+1)
c = ~z

(s+1)
c . When we solve for ~xfq

, on
each of the refined sub-domains Ωfq , q = 1, 2, ..., p, we use the last updated
solutions ~x

(s+1)
c and ~x

(s)
fq

as boundary conditions. This would be a kind of a
two level block Jacobi formulation, and all the sub-domains Ωfq

can be solved
in parallel. We can also use a coloring of the sub-domains, or use a typical
two level Gauss-Seidel formulation. By using a block Jacobi formulation,
each sub-domain Ωfq , q = 1, 2, ..., p, can be given as

An
fqfq

~x
(s+1)
fq

= ~yfq , ~xfq , ~yfq ∈ RNq ,

where
~yfq
← ~yfq

−
∑
l 6=q

An
fqfl

~x
(s)
fl
−An

fqc~x
(s+1)
c .
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Note that these problem can be solved in parallel, by using the latest updated
boundary conditions. Then the updated composite solution vector is given
by

~x(s+1) =

[
~x

(s+1)
c

~x
(s+1)
f

]
.

The iteration goes back to the definition in equation (5.2) and it proceeds
until the composite solution vector satisfy

||~x(s+1) − ~x(s)||
||~x(s)|| < ε.

Here ε is a prescribed tolerance.

6 Parallel Implementation

The Galerkin algorithm described earlier can be formulated as an iterative
process, where in each iteration we solve updated boundary value problem for
each sub-domain. The work on each sub-domain, consists mainly of building
the corresponding Jacobian and the right hand side. Then solving the cor-
responding linear system restricted to one sub-domain, using values from its
neighboring sub-domains as boundary conditions. The sub-problems can be
solved in parallel because neighboring sub-problems are only coupled through
previously computed values in the neighboring sub-domain. The basic buil-
ding block for the Galerkin domain-decomposition method is the sub-domain
solver. The sub-domains can be carried out completely independently, allo-
wing the code to run on different processors of a parallel computer.

Traditionally, domain-decomposed parallelization of PDE is done at the
level of local matrix/vector operations and linear solvers. However, we are
interested in a parallelization strategy at the level of sub-domain simulators.
In [5, 18], they have proposed a Simulator Parallel Model (SPM) for paralleli-
zing existing sequential PDE simulators, which is a Single Program Multiple
Data (SPMD) model. Basically, the SPM based on domain-decomposition for
developing parallel PDE software is: Assign one processor with one or several
sequential simulators, each responsible for one sub-domain. The coordination
of the computation among the processors is left to a global administrator, im-
plemented at a high abstraction level, close to the mathematical formulation
of the Galerkin method.

The SPM strongly promotes code reuse, because most of the global admi-
nistration and the related communications between processors can be extrac-
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ted from specific applications. This means that we minimize the development
costs and we have efficient control of performance parameters such as load
balance, communication topology and domain-decomposition.

The generic framework object-oriented framework for implementing a par-
allel version of SOM, based on the simulator-parallel programming model,
consists of three main parts: The sequential sub-domain simulator Sub-
domain Simulator, a communication part Communicator and a global
administrator SOM Manager. Figure 5 shows the simplified framework.

Geometry

Sequential simulator

Subdomain simulator

Extended sequential
simulator

Standard interfaceGlobal Communicator

Basin
Bound. C
Init. C
GMRES

administrator

OOMPI

Figure 5: The figure shows the object-oriented framework for the simulator parallel
model. The three main parts are: the sub-domain simulators with local data, the
global administrator and a communicator class.

The sub-domain simulator is the most important building block in the
model. It consists mainly of the code from the sequential simulator, but also
of some ad-on functions to handle the parallel computing, synchronization
and to be able to use communicated boundary values. We assign one sub-
domain simulator, controlling one refined sub-domain, to each processor. In
addition we let one processor controlling the coarse grid solver.

During the parallel simulation, the concrete communication between pro-
cessors occurs in form of exchanging messages and it is all handled by objects
of Communicator. On each processor there is one such object connected
to the local sub-domain simulator. This class uses member functions, given
by each of the sub-domain simulators, to retrieve and modify its local data.
The only concern of this class is sending and receiving data between each
processor, and no actual computing is done here, just assembling and storing
data. To solve these two problems, this class have a close connection to the
OOMPI library. We have implemented a manager class SOM Manager, to
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administrate each of the sub-domain solvers. The class is controlled from the
main program, and it has the global view if the concurrent solution process.

7 Some Computer Experiments

In this section we report parallel simulation results of some numerical expe-
riments. The purpose is as follows: Examine the parallel efficiency of the
implemented parallel simulator, due to scalability and speedup. We have
carried out the experiments on a SGI Origin 2000, with R10000 processors,
to explore the behavior of the method.

7.1 Computer Experiment 1

In the first computer experiment, we are mainly interested in exploring the
parallel implementation due to scalability and parallel efficiency. The scaling
factors are dependent of two parts. First the independent variables, which are
the problem size and the number of processors. Then we have the dependent
variables, which are the variables inside the respectively parallel application.
We concentrate on the first group. By varying the number of grid blocks and
the number of sub-domains used, we want to explore the scaling properties
and parallel performance compared to the sequential program.

The number of grid blocks, or the problem size, could have a large in-
fluence on the parallel efficiency and the scalability of the parallel program.
Larger problem size means larger memory requirements, which again leads
to how the actual computer handles a larger memory in the cache. A par-
allel program could have a great performance on small problems, but would
be very slow on very large problems. Communication time depends on the
number of grid blocks on each sub-domain and on the time for constructing
and sending boundary data to neighboring sub-domain processor.

Also, we want to vary, is the number of processors used. When increasing
the number of processors, we expect that the used wall clock time would
decrease. Ideally, it would decrease in a linear way.

The partition of the domain Ω is as follows. We divide the domain in
equally sized sub-domains M and connect one processor to one sub-domain.
The decomposition of the grid Ω is done in 3D. In addition, we use one
processor for the coarse grid. Thus, the total number of processors used
becomes P = M + 1. With this partition of the domain we would have a
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# P Speedup # N NX × NY × NZ CPU (s)
9 9.7 2.88·105 40×30×30 214
9 9.5 5.76·105 80×30×30 534
9 10.6 11.52·105 80×60×30 1085
17 16.5 2.88·105 40×30×30 125
17 18.7 5.76·105 80×30×30 262
17 17.8 11.52·105 80×60×30 598
33 32.6 2.88·105 60×60×10 60
33 33.4 5.76·105 60×60×20 132
33 33.7 11.52·105 60×60×40 306
49 48.8 11.52·105 80×60×30 220
49 48.3 23.04·105 80×60×60 433

Table 1: The used CPU time (in seconds) and the parallel performance for different
number of processors P and different problem-sizes N . NX × NY × NZ are the
number of grid blocks in each direction. In each grid cell we have 8 unknowns N :
6 hydro-carbon components, the water pressure and the temperature. P = M + 1,
where M is the number of sub-domains. The speedup numbers are calculated by
comparing with the sequential CPU time.

perfectly load balanced system. Since we use uniform lithology in Ω, the
computational complexities would be the same for all sub-domains.

From Table 1, we can see that the parallel efficiency of the parallel version
of the simulator is very good. When increasing the number of processors by
a factor of two, we then approximately decrease the CPU time by a factor
of two. This means that the parallel code is very efficient due to the com-
puting/communication relation. The scalability is given by the expression
T (P, N) = T (kP, kN). Here T is the CPU time, P is the number of proces-
sors, N is the total number of unknowns and k is the scaling-factor. From
Table 1, we see that this is almost given. The load on the Origin 2000 com-
puter varies from time to time, which can explain some of the jumps in the
given CPU time in Table 1.

Table 1 has also a number for speedup, which is the result by comparing
the parallel version against the sequential version of the code. Table 1 shows
that we have a super-linear speedup in this experiment. It is caused by the
fact thata CPU working in parallel may have a faster access to the cache
memory than a single processor has.
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7.2 Computer Experiment 2

The previous computer experiment was relatively simple. The rectangular
domain-decompositions give a rectangular communication topology, which
could improve the parallel performance. Many applications require a non-
rectangular domain-decomposition/communication topology, which could af-
fect the communication time.

Figure 6: These figures show the oil which is migrating through a faulted carrier
bed. The oil tends to follow the permeable layers connected by the very high per-
meability crushed zones (red color). The coarse grid blocks (green color), represents
almost non-permeable lithology.

In the next problem we use a non-regular geometry with locally refined
patches. In this implementation, we only use a very simple compositional
model, the SBO [11]. This mainly interpolates from some dew-point tables
and bubble-point tables. This simplification implies that, doing the flash
calculation would not take much part of the time.

We want to simulate the migration of oil through a faulted area. Parallel
to the faults there are crushed zones with high permeability and high porosity.
These high permeability zones may create some computational complexities.
The computing domain and the domain decomposition are shown in Figure 6.
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The coarse grid blocks are representing a very low permeable litholology. In
Figure 6 the coarse grid blocks are removed and we can clearly detect the
faulted area. The permeability varies from almost impermeable, to 500 mD
in the crushed fault zone. The layered sediments have varying permeability,
but all below 500 mD. The aspect ratio, which is the relation between the
horizontal and vertical permeability, is 10 in this experiment.

The extent of the domain is 1000 m × 300 m × 140 m and the carrier bed
are lifted 200 m above the horizon. As boundary condition we use a relatively
large water flux qw = 1.0 · 10−4 mol/m2s, from left to right. This is injected
only in the permeable sediments. An oil flux qo = 1.0 · 10−9 mol/m2s, is also
injected in the lowest portion on the left side. Only water can go out of the
sediments on the right-hand side. The simulation period is 300000 days, or
about 822 years. It should be noticed that all the lithologies data and the
boundary conditions are realistic.

Each refined subdomain follow a faulted block, containing 200 grid blocks,
which means that we have about 2500 grid blocks in total. In Figure 6, we
have given two snapshots of the oil saturation during the simulations after
50000 days and after 250000 days. Here we can clearly see the oil migrating
through the higher permeability zones. These are connected via the crushed
faulted zone with a very high permeability. We can also see that some of the
oil is trapped, i.e. on the top of two of the faults in Figure 6. Table 2, shows
the CPU measurements for different parts of the IMPEC solution strategy
in the code. The CPU measurements are after 10 days of simulation. The
system would get stabilized during the simulation, so a longer time period
would not be relevant for these results.

We notice is that we have a great loss of parallel performance in the
“Solve Pressure” function. This loss is mainly due to the bad speedup of the
Galerkin solver, only 9.8. This experiment demonstrates that the geometrical
complexities would strongly affect the time solving the pressure equation. In
this experiment, we have located the high conductivity faults on the interface
between two coarse grid blocks. We know that this may be a very bad choice.
Instead, the faults should be located inside the coarse grid blocks, which
probably would given a better numerical results. The overall speedup is still
quite good 12.1, despite the poor performance in the pressure solver.
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13 CPU Sequential
Function CPU (s) % t. loop speedup CPU (s) % t. loop
Update rock data 0.2 0.26 13.0 2.6 0.02
Calc coupl. coeffi. 0.5 0.67 13.0 6.5 0.7
Solve temperature 5.9 7.9 11.3 66.7 7.5
Solve Pressure 23.8 32.0 10.6 255.0 28.4
*Eq. setup 5.0 6.7 14.6 73.3 8.1
*Eq. solve 18.3 24.0 9.8 178.4 19.8

Calc molar masses 40.0 53.3 13.1 523.4 58.3
Do flash calc. 0.4 0.5 11.8 4.7 0.48
Update physical var. 0.8 1.0 11.3 9.0 0.88
Total time loop 74.4 100 12.1 897.2 100
Total simulation 74.8 * 12.1 899.0 *

Table 2: This table gives the CPU measurements from the IMPEC solution
strategy. The CPU time is a result of 10 days of simulation.

8 Conclusions

In this work we have used a fixed adaptive LGR technique. In simulation of
reservoirs with fixed wells, faults and large fractures, certain fixed LGR tech-
niques have proven to be very effective. Our fixed adaptive LGR technique
creates non-matching interfaces, as nearly all LGR techniques do.

The most important issue when working with fluid flow is to conserve the
mass. To ensure mass conservation, the flux calculation across any of the
interfaces (both matching and non-matching) have to be treated with great
care. In most application, a two point flux approximation has been used.
In this paper a muli point flux approximation (MPFA) is also implemented.
As far as we now, a MPFA method has not yet been applied to cases with
non-matching interfaces in three dimensions. In this work we propose to
add slave cells close to the non-matching interfaces. Since these slave cells
create a locally matching grid an existing MPFA method may be used. The
Simulator Parallel Mode (SPM) which is described in this paper, strongly
promotes code reuse and gives a very high level of parallelization despite low
implementation costs. This programming framework is also portable to other
platforms or other applications. With this model we have good control with
performance parameters as load balance, synchronization and communication
topology.

We have presented two computer experiments to examine the parallel
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efficiency of the implemented parallel simulator with respect to scalability
and speedup. In the first experiment we examine the scalability for a large
homogeneous one-phase problem. In the next experiment, we go a step fur-
ther and study multi-phase heterogeneous problems. This problem requires
a much larger portion of communication and synchronization, than in the
first experiment. However, the experiments still show nice results for par-
allel efficiency and speedup. In many industrial groups, clusters of PCs or
workstations are used. This means that for effective use of the computers,
a parallel implementation based on explicit message passing inside the net-
work should be considered. Our parallel implementation framework puts
no restriction for running the code on such networks/clusters with PCs or
workstations. This option should be implemented in the future. Asynchro-
nous MPI implementation should be considered, due to the heterogeneous
computers in a typical network.
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Relationships among Some Conservative
Discretization Methods

Thomas F. Russell

Abstract

Relationships among various mass-conservative discretization tech-
niques for equations of the type −∇ · K∇p = q on distorted logi-
cally rectangular meshes are discussed. The case of heterogeneous,
anisotropic K is important for applications to subsurface porous me-
dia, in particular the groundwater flow equation and the pressure
equation of petroleum reservoir simulation. Some methods are based
on K itself, others on K−1. Within one of these groups, mass lumping
and quadrature can be keys to understanding connections between me-
thods; incomplete inversion of the mass matrix is useful in relating one
group to the other.

KEYWORDS: conservation, distorted grid, finite volume, mixed method

1 Introduction

The purpose of this paper is to introduce some concepts that could be use-
ful in understanding relationships among various types of conservative di-
scretization methods. We concern ourselves particularly with finite volume,
flux-based finite difference, and mixed finite element methods designed to cal-
culate accurate fluxes on distorted meshes for problems with heterogeneous,
anisotropic conductivity. Such procedures can be important in a variety of
applications, particularly subsurface flows in porous media.

This study is merely introductory, and is far from exhaustive or definitive.
The methods discussed here are sufficiently varied and complex that a com-
plete analysis of their relationships would constitute a much longer paper. It
is not our goal here to compare the merits of these approaches; other forums
will be more appropriate for that. We also do not address the nontrivial is-
sues of solving the discrete equations arising from these methods. Rather, we
seek some simple tools that can assist efforts to comprehend a “big picture”
of discretizations that can fairly be described as confusing.
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c© Springer-Verlag Berlin Heidelberg 2000
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For simplicity of exposition, the spatial domain will be limited to 2-D, with
3-D mentioned only in passing. This is a significant simplification, because,
for example, the edges of a quadrilateral (bilinear image of a square) are
straight, but the faces of a hexahedron (trilinear image of a cube) need not be
planar, and while the Jacobian of a bilinear mapping is linear, in general for a
trilinear mapping it is nonlinear. The 2-D methods discussed here extend in
one way or another to 3-D, and are in various stages of development for 3-D.
However, for our introductory purposes here, we find it best to emphasize
2-D. For similar reasons, we consider only a linear pressure equation, and our
focus is on logically rectangular meshes, though more complicated PDEs and
grids of more general connectivity could be addressed.

Section 2 describes the lowest-order Raviart-Thomas (RT0) [11, 12] mi-
xed finite element (MFE) method, as a starting point to which other methods
can be related. The analogous control-volume mixed (CVMFE) method [5]
is introduced in Section 3, along with some modifications by Garanzha and
Konshin [7] and some observations in [7] that relate the CVMFE to the
support-operators (SO) method of Shashkov and co-workers [8, 10]. These
methods are related in a different way in Section 4 to the multi-point flux ap-
proximation (MPFA) methods of Aavatsmark and co-workers [1, 2]. Section
4 also briefly discusses the expanded mixed (EM) method of Arbogast et al.
[3, 4] and the mixed finite volume (MFV) method of Thomas and Trujillo
[13], and Section 5 summarizes the paper.

2 RT0 Mixed Method

A MFE represents a partial differential equation as a system of lower-order
equations, solving these for multiple variables of physical interest. In the
context of porous media, we assume incompressible flow, neglecting gravita-
tional effects, so that the pressure equation (with no-flow boundary condition
for simplicity) takes the form

− ∇ · (K∇p) = q, x ∈ Ω, (2.1)

−K∇p · n = 0, x ∈ ∂Ω, (2.2)

where K (scalar or anisotropic tensor) is the mobility or hydraulic conduc-
tivity, p the pressure, q a source/sink (e.g., well) term, and Ω is the reservoir
or aquifer with boundary ∂Ω. Let v be the velocity vector, and express (2.1)
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as a system representing Darcy’s law and conservation of mass, respectively:

v = −K∇p, (2.3)

∇ · v = q. (2.4)

A primary goal is to obtain a more accurate v, especially when K is hete-
rogeneous, by solving the system (2.3)–(2.4) for v and p, instead of solving
(2.1) for p and applying (2.3) to obtain v. Piecewise-constant test functions
in (2.7) below will also yield local mass conservation.

As in [11], let V = {w ∈ H(div, Ω) : w ·n = 0 on ∂Ω}, P = L2(Ω), write
(2.3) as

K−1v + ∇p = 0, (2.5)

and arrive at the weak form of (2.3)–(2.4), which is to find v ∈ V and p ∈ P

such that
∫

Ω
K−1v · w dx −

∫
Ω

∇ · w p dx = 0, w ∈ V, (2.6)

∫
Ω

∇ · v z dx =
∫

Ω
qz dx, z ∈ P. (2.7)

The rectangular RT0 elements define discrete subspaces Vh and Ph with
respect to a cartesian grid. Ph consists of the piecewise-constant functions.
Vh can best be viewed by associating a degree of freedom with the flux
(constant normal component times edge length |E|) on each inter-block edge
E. A typical basis function has flux 1 on one edge (D in Fig. 1) and 0 on
all others, with the flux varying linearly in the direction of the velocity. For
arbitrary quadrilateral grids, appropriate pressure and velocity spaces are
defined via the Piola mapping [11, 12] (see Section 3.2).

Figure 1. RT0 velocity basis function on rectangles.
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3 CVMFE and K−1 Methods

In addition to the local mass conservation provided by (2.7), the CVMFE
seeks a local discrete Darcy law, which an engineer could view as applying to
a cell-sized “tank” with pressures imposed at the ends. In the MFE context,
this is analogous to the formulation of control-volume finite element (CVFE)
methods from Galerkin FE, hence the name. We describe the formulation
first on rectangles, then on distorted quadrilaterals.

3.1 Rectangular Grid

Starting from the system (2.4)–(2.5), consider the pressure cells Qi,j and
the control volumes Qi+1/2,j and Qi,j+1/2 associated with the edge fluxes
(fx)i+1/2,j and (fy)i,j+1/2, as depicted in Fig. 2. For this case, we take
K = k to be scalar. The unknowns are associated with cells and edges as
in the MFE, and the trial functions for v and p are again the RT0 spaces.
In the MFE, the test functions w and z are from the same spaces; in the
CVMFE, (2.4) is still treated in this way, but the x- and y-components of
the vector Darcy law (2.5) are instead integrated over “tanks” Qi+1/2,j and
Qi,j+1/2, respectively. This is equivalent to taking the scalar product of (2.5)
with w = (1, 0) on Qi+1/2,j and (0,0) elsewhere, and with w = (0, 1) on
Qi,j+1/2 and (0,0) elsewhere, respectively, and integrating. The resulting
partial derivatives of p can be integrated out, leaving∫ xi+1

xi

∫ yj+1/2

yj−1/2

k−1vx(x, y) dy dx +
∫ yj+1/2

yj−1/2

(p(xi+1, y) − p(xi, y)) dy = 0,

(3.1)
and similarly for the y-component. Using the RT0 trial functions, the inte-
grals such as (3.1) are expressed in terms of the unknowns p, fx, and fy. We
then obtain the discrete Darcy equations on the “tanks”: in the x-direction
on Qi+1/2,j ,

ai+1/2,j;A(fx)i−1/2,j + ai+1/2,j;D(fx)i+1/2,j

+ai+1/2,j;G(fx)i+3/2,j + pi+1,j − pi,j = 0, (3.2)

where A, D, G refer to edges as in Fig. 1, and

ai+1/2,j;A =
1
8

k−1
i,j

|Qi,j | (∆xi)2, (3.3)

ai+1/2,j;D =
3
8

k−1
i,j

|Qi,j | (∆xi)2 +
3
8

k−1
i+1,j

|Qi+1,j | (∆xi+1)2, (3.4)
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ai+1/2,j;G =
1
8

k−1
i+1,j

|Qi+1,j | (∆xi+1)2, (3.5)

where ∆xi = xi+1/2 − xi−1/2, ∆xi+1 = xi+3/2 − xi+1/2, with an analogous
equation in the y-direction on Qi,j+1/2.

Figure 2. Cells, unknowns, and control volumes for rectangular grid.

Integration of (2.4) over the cell Qi,j (equivalent to multiplying by a test
function z = 1 on Qi,j and 0 elsewhere), together with the Gauss divergence
theorem, yields the discrete mass conservation:

(fx)i−1/2,j − (fx)i+1/2,j + (fy)i,j−1/2 − (fy)i,j+1/2 = −|Qi,j |qi,j . (3.6)

Equation (3.2), its y-analogue, and (3.6) give rise to a symmetric system of
linear equations that is solved for the pressures at block centers and the fluxes
across edges.

3.2 Distorted Quadrilateral Grid

If Q is a convex quadrilateral, then there is a unique bilinear mapping of
a reference square Q̂ = [0, 1]2 onto Q that sets up coordinates on Q. The
pressure in Q is associated with the “center” of Q, meaning the image of the
center of Q̂. Note that this is not generally the centroid of Q.

The extension of the CVMFE method to general quadrilaterals requires
that continuity of flux be maintained, so that the normal component of a
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velocity function must be constant on each edge. Then we can associate
degrees of freedom with fluxes on edges, as in the rectangular case. In Fig. 3
we show two adjacent quadrilaterals with coordinates determined by their
local bilinear mappings. The velocity vector function vi+1/2,j that has flux 1
(hence normal component 1/|Ei+1/2,j |) on the common edge Ei+1/2,j (labeled
in Fig. 4) and 0 on the other edges is pictured. It is oriented along x-
coordinate lines, and has constant normal component on each complementary
y-line, with the flux varying linearly in the x-direction.

Figure 3. Velocity basis function vi+1/2,j on quadrilaterals.

Let x̂, ŷ ∈ [0, 1] be the reference coordinates for a quadrilateral Q. Set

X(x̂, ŷ) =
(

∂x

∂x̂
,
∂y

∂x̂

)
(3.7)

Y(x̂, ŷ) =
(

∂x

∂ŷ
,
∂y

∂ŷ

)
(3.8)

to be the columns of the Jacobian matrix of the bilinear mapping. These can
be viewed as the images of the vectors (1, 0) and (0, 1), respectively, under
the mapping from Q̂ to Q. For example, the vi+1/2,j in Fig. 3 is parallel to X,
and after some manipulation, one can show that it is given on the left-hand
quadrilateral Qi,j by

vi+1/2,j(x, y) =
x̂X

Ji,j(x̂, ŷ)
, (3.9)

where
Ji,j(x̂, ŷ) =

∂x

∂x̂

∂y

∂ŷ
− ∂x

∂ŷ

∂y

∂x̂
(3.10)
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is the Jacobian of the mapping from Q̂ to Qi,j . In the right-hand quadrila-
teral Qi+1,j , everything is the same except that 1 − x̂ and Ji+1,j replace x̂

and Ji,j , respectively. These velocity trial functions and unknowns (fluxes
across edges) can also be obtained from those on rectangles by a Piola trans-
formation [12]. Define also the corresponding unit normal vectors, nx ⊥ Y,
ny ⊥ X, pictured in Fig. 4:

nx =
(∂y/∂ŷ, −∂x/∂ŷ)

[(∂x/∂ŷ)2 + (∂y/∂ŷ)2]1/2
, (3.11)

ny =
(−∂y/∂x̂, ∂x/∂x̂)

[(∂x/∂x̂)2 + (∂y/∂x̂)2]1/2
. (3.12)

Figure 4. Control-volume mixed finite elements on quadrilaterals.

It remains to choose control volumes and test functions. For the integra-
tions of (2.4), the control volumes are the quadrilateral blocks Qi,j , and the
test functions are scalar characteristic functions of the control volumes, i.e.,
functions that are 1 on one volume and zero elsewhere. The Gauss divergence
theorem then yields (3.6) for quadrilaterals as well as rectangles.

For the integrations of (2.5), to mimic the steps leading to (3.1), we
use images of rectangular control volumes Qi+1/2,j and Qi,j+1/2 under the
bilinear mapping, as seen in Fig. 4. We again denote such control volumes
by Qi+1/2,j and Qi,j+1/2. Qi+1/2,j in Fig. 4 will be the “tank” with pressures
pi,j and pi+1,j at the two ends. We seek test functions that allow the gradient
of p to be integrated out, leaving differences of p.

Let Qi+1/4,j and Qi+3/4,j denote the “left-hand half” and “right-hand
half,” respectively, of Qi+1/2,j . Then Qi+1/4,j is the image of the right-hand
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half, (1/2, 1) × (0, 1), of Q̂ under the mapping to Qi,j . The original CVMFE
[5] used X as the test function, which led to integrals that could be calcula-
ted analytically, with a factor of 1/J outside the integral; the modification
suggested by Garanzha and Konshin [7] instead uses X/J , which requires nu-
merical integration but gains accuracy on highly distorted meshes. By their
approach, the left-half p integral analogous to the one in (3.1) is

∫
Qi+1/4,j

∇p · (Xi,j/Ji,j) dx =
∫ 1

0

∫ 1

1/2

∂p

∂x̂
dx̂ dŷ

=
∫ 1

0
p(1, ŷ) dŷ −

∫ 1

0
p(1/2, ŷ) dŷ

≈ pi+1/2,j − pi,j , (3.13)

where the last step involves p at edge and cell centers and is exact for bili-
near p. In defining the CVMFE equations, treat (3.13) as exact, i.e., ignore
truncation error. Similarly, the right-half integral yields

∫
Qi+3/4,j

∇p · (Xi+1,j/Ji+1,j) dx = pi+1,j − pi+1/2,j . (3.14)

Hence, by choosing the test vector field

wi+1/2,j =




Xi,j/Ji,j on Qi+1/4,j ,
Xi+1,j/Ji+1,j on Qi+3/4,j ,
0 elsewhere,

(3.15)

we combine (3.13)–(3.14) into
∫
Qi+1/2,j

∇p · wi+1/2,j dx = pi+1,j − pi,j , (3.16)

and the edge value pi+1/2,j is eliminated. If desired, it can be recovered later
in a postprocessing step.

With the test function from (3.15), the v term of (2.5) can be calculated
as in [5], leading to the discrete Darcy equation analogous to (3.2), with edges
denoted as in Fig. 1:

ai+1/2,j;A(fx)i−1/2,j + ai+1/2,j;D(fx)i+1/2,j + ai+1/2,j;G(fx)i+3/2,j

+ai+1/2,j;B(fy)i,j+1/2 + ai+1/2,j;C(fy)i,j−1/2

+ai+1/2,j;E(fy)i+1,j+1/2 + ai+1/2,j;G(fy)i+1,j−1/2

+pi+1,j − pi,j = 0, (3.17)
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where the coefficients in (3.17) are given by

ai+1/2,j;D =
∫ 1

0

∫ 1

1/2
x̂(K−1

i,jXi,j) · Xi,j/Ji,j dx̂ dŷ (3.18)

∫ 1

0

∫ 1/2

0
(1 − x̂)(K−1

i+1,jXi+1,j) · Xi+1,j/Ji+1,j dx̂ dŷ,

ai+1/2,j;A =
∫ 1

0

∫ 1

1/2
(1 − x̂)(K−1

i,jXi,j) · Xi,j/Ji,j dx̂ dŷ, (3.19)

ai+1/2,j;G =
∫ 1

0

∫ 1/2

0
x̂(K−1

i+1,jXi+1,j) · Xi+1,j/Ji+1,j dx̂ dŷ, (3.20)

ai+1/2,j;B =
∫ 1

0

∫ 1

1/2
ŷ(K−1

i,jYi,j) · Xi,j/Ji,j dx̂ dŷ, (3.21)

ai+1/2,j;C =
∫ 1

0

∫ 1

1/2
(1 − ŷ)(K−1

i,jYi,j) · Xi,j/Ji,j dx̂ dŷ, (3.22)

ai+1/2,j;E =
∫ 1

0

∫ 1/2

0
ŷ(K−1

i+1,jYi+1,j) · Xi+1,j/Ji+1,j dx̂ dŷ, (3.23)

ai+1/2,j;F =
∫ 1

0

∫ 1/2

0
(1 − ŷ)(K−1

i+1,jYi+1,j) · Xi+1,j/Ji+1,j dx̂ dŷ. (3.24)

The Darcy equation for the horizontal edge Ei,j+1/2 is analogous, with the
roles of the x- and y-directions reversed. That equation, with (3.6) and (3.17),
forms the discrete system for CVMFE.

As the trial and test functions are different for CVMFE, the discrete
equations may not be symmetric. A representative example is (3.21), in
which test function wi+1/2,j interacts with trial function vi,j+1/2. Symmetry
would require that (3.21) yield the same result as

ai,j+1/2;B =
∫ 1

1/2

∫ 1

0
x̂(K−1

i,jXi,j) · Yi,j/Ji,j dx̂ dŷ. (3.25)

Since (3.21) and (3.25) integrate over different (but overlapping) half-cells,
symmetry cannot hold in general with variable J (with constant J , X, Y,
as on a grid of parallelograms, symmetry does hold). However, with a qua-
drature rule that receives no contribution from the nonoverlapping parts of
the half-cells, i.e., one whose nonoverlapping points have ŷ = 0 in (3.21) and
x̂ = 0 in (3.25), symmetry is possible. As noted by Garanzha and Konshin
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[7], for the half-cell in (3.21), a rule of the form

∫ 1

0

∫ 1

1/2
g dx̂ dŷ ≈ r(g(1/2, 0) + 2g(1, 1/2) + g(1/2, 1))

+ (1/8 − r)(g(1, 0) + 2g(1/2, 1/2) + g(1, 1)), (3.26)

where 0 ≤ r ≤ 1/8, preserves symmetry and also integrates bilinear g exactly.
With such a quadrature, the entire discrete system is symmetric, and for
parallelograms all integrals are exact; in particular, the weights 1/8, 6/8, 1/8
in (3.3)–(3.5) are preserved. We note here that the corresponding weights
for MFE are 1/6, 4/6, 1/6, and that MFE is symmetric with any consistent
quadrature because the trial and test functions coincide. Because the MFE
integrands that produce these weights are quadratic, it is possible within the
MFE framework, with a rule that is not exact for quadratics, to produce
the CVMFE weights and the CVMFE formulas resulting from quadrature
rule (3.26) [7]. In general, it is not possible to produce the exact CVMFE
formulas in this way, as they are nonsymmetric.

Quadrature provides a convenient framework within which to consider
the technique of mass lumping, which is often used to simplify finite element
methods, producing a diagonal mass matrix and reducibility to finite diffe-
rences. In the context of CVMFE equations (3.18)–(3.24), this is equivalent
to setting x̂, 1 − x̂, ŷ, and 1 − ŷ equal to 1 whenever they are greater than
1/2, and 0 otherwise, then integrating. In (3.26), this would correspond to a
quadrature with x̂ = 1 and ŷ = 0 or 1, i.e.,

∫ 1

0

∫ 1

1/2
g dx̂ dŷ ≈ 1/4 (g(1, 0) + g(1, 1)). (3.27)

This quadrature preserves symmetry, just as (3.26) does, but it does not in-
tegrate bilinear g exactly; indeed, it must not, because it changes the weights
1/8, 6/8, 1/8 in (3.3)–(3.5) to 0, 1, 0. Garanzha and Konshin [7] (p. 24) note
that this lumping produces the SO method [8, 10]. Thus, CVMFE and SO
are related in much the same way as CVFE and conventional point-centered
finite differences.

4 Relationships to K Methods

In the petroleum industry, there is considerable recent work [1, 2, 6, 9] on
discretizations that take a view dual to that of formulas such as (3.17). We
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call the methods of Section 3 “K−1 methods” because, when complicated
details are ignored, they reduce to a relationship of the form

− K−1 f = ∆p, (4.1)

where f is the flux vector and ∆p the pressure difference. K−1 appears
discretely as a mass matrix, so that a combination of fluxes equals a pressure
drop. “K methods,” on the other hand, adopt the perspective that

f = −K∆p, (4.2)

expressing an individual discrete flux as a combination of pressure drops. As
a prototype of these methods, we consider the MPFA scheme of Aavatsmark
et al. [1, 2] and seek to relate K−1 methods to it. It seems natural to attempt
to pass from (4.1) to (4.2) by inverting K−1. To avoid a full stencil in (4.2)
even for orthogonal grids, it is necessary to lump the principal weights in K−1,
such as the 1/8, 6/8, 1/8 for CVMFE. For the contributions to K−1 caused
by non-orthogonality and/or anisotropy, some form of incomplete inversion
is suggested.

Figure 5. Cells and interaction region for MPFA method.

To describe the MPFA method, we refer to Fig. 5. The pressure p is to be
determined at the cell centers and is assumed to be linear (not bilinear) on
each piece I,II,III,IV of the interaction region. Thus, there are 12 degrees of
freedom on that region, and 12 constraints are imposed: 4 cell-center values,
continuity of p at the 4 points where the interaction-region boundary crosses
a cell edge, and continuity of the flux across the 4 interfaces in the region.
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To close this system, the relation

fE = −
∫
E

K∇p · n dS (4.3)

between the pressure and the fluxes across edges is needed. With a bilinear
reference mapping to a distorted quadrilateral, as in Section 3, this can be
written

fx = a
∂p

∂x̂
+ c

∂p

∂ŷ
,

fy = c
∂p

∂x̂
+ b

∂p

∂ŷ
, (4.4)

where

a = −J (K∇x̂) · ∇x̂ = −(Y · Y/J) (Knx) · nx,

b = −J (K∇ŷ) · ∇ŷ = −(X · X/J) (Kny) · ny,

c = −J (K∇x̂) · ∇ŷ = −(|X||Y|/J) (Knx) · ny. (4.5)

Figure 6. Uniform grid of parallograms.

This is best understood in a simple case, where a, b, c are constants. In
Fig. 6 we show a grid of parallelograms that meets this criterion, since J , X,
Y are constants, and assume also that K = k is a scalar constant. Referring
to Fig. 6, solution of the 12 equations leads to [1]

fD =
(

a − c2

2b

)
(p2 − p1)+

c

4

(
1 +

c

b

)
(p3 − p5)+

c

4

(
1 − c

b

)
(p4 − p6). (4.6)

(For no distortion, c = 0, and (4.6) reduces to fD = a(p2 − p1), as expected
for finite differences.) If θ is the angle of distortion (θ = 0 for rectangles,
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X · Y = |X||Y| sin θ), then J = |X||Y| cos θ, nx · ny = − sin θ, and

a =
−Jk

X · X cos2 θ
, b =

−Jk

Y · Y cos2 θ
, c = k tan θ = k

X · Y
J

, (4.7)

whence

a − c2

2b
= − Jk

X · X ,
c

4
=

1
4

k
X · Y

J
. (4.8)

Next, we evaluate the coefficients in the K−1 methods. For the configu-
ration in Fig. 6, we write the analogue of (3.17),

aAfA + aBfB + aCfC + aDfD + aEfE + aF fF + aGfG + p2 − p1 = 0, (4.9)

where, by (3.18)–(3.24),

aD =
6
8

k−1X · X
J

, aA = aG =
1
8

k−1X · X
J

,

aB = aC = aE = aF =
1
4

k−1Y · X
J

. (4.10)

For MFE, the coefficients 6/8, 1/8 in (4.10) become 4/6, 1/6; for lumping
(SO), they are 1, 0; for all of the K−1 methods, the 1/4 holds. As noted
above, before inverting K−1, it is best to lump; doing so, and using (4.8),

p2 − p1 = −k−1X · X
J

(fD + ε(fB + fC + fE + fF )),

=
(

a − c2

2b

)−1

((I + εN)f)D, (4.11)

where
ε =

1
4
X · Y
X · X (4.12)

and N is a matrix with 1’s on 4 off-diagonals. Now, because

(I + εN)−1 = I − εN + O(ε2), (4.13)

we can perform an incomplete inversion and write

fD =
(

a − c2

2b

)
(p2−p1−ε[(p4−p1)+(p3−p2)+(p1−p5)+(p2−p6)]). (4.14)

The leading terms of (4.6) and (4.14) match. The terms of first order in c

would match if

c = −4ε

(
a − c2

2b

)
. (4.15)
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A calculation from (4.8) and (4.12) shows that actually

c = −4ε

(
a − c2

2b

) (
X · X

J

)2

. (4.16)

Thus, it could be of interest to study how these methods relate on significantly
distorted grids with large aspect ratios.

Arbogast et al. [3, 4] and Thomas and Trujillo [13] have developed other
distorted-grid K methods derived from MFE formulations. The complexities
are such that we can only give sketchy qualitative descriptions here. The ex-
panded mixed (EM) method circumvents the difficulty of inverting K−1 by in-
troducing an additional auxiliary variable, ṽ = −∇p, and then incorporating
the relation v = Kṽ into the weak form. The usual MFE for div (K grad),
if reduced to a single equation for the pressure, leads to a discrete matrix
NTM−1N, where the three factors essentially discretize div, K, and grad,
respectively; M is sparse, but M−1 is full. The EM puts K on the right-hand
side of the system, where its connectivity is sparse, in place of K−1 on the
left. Low-order integration (midpoint and trapezoidal rules) leads to lum-
ping and a compact stencil (9-point in 2-D, 19-point in 3-D) for use in finite
difference codes. It seems likely that this scheme is related to lumped incom-
pletely inverted K−1 methods, because such methods can obtain the same
stencils in 2-D and 3-D, but this is speculative at this point. The method
also uses Lagrange multipliers, representing edge pressures, where the grid
is not smooth; another speculation is that these are related to the CVMFE
edge pressure values that were eliminated in (3.16). The aim of Thomas and
Trujillo is a MFV formulation that admits both a discrete pressure and a
discrete velocity that have the regularity of their physical counterparts, i.e.,
p ∈ H1(Ω) and v ∈ H(div, Ω). In the usual MFE approaches, v satisfies this
criterion, but p does not. The discrete MFV pressure is continuous piecewise
bilinear on a primal grid, with test functions that are constant on dual cells
centered around the vertices of the primal cells. The trial and test functions
for v are similar to those for the CVMFE method, but on a finer mesh. This
appears to be substantially different from all of the other methods discussed
here.

5 Summary

The challenge of constructing accurate discretization methods for heteroge-
neous, anisotropic problems on distorted grids has given rise to a wide variety
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of approaches. The ones considered here (MFE, CVMFE, SO, MPFA, EM,
MFV) share the property of conserving mass locally on discrete cells. Thus,
in some sense they are all finite-volume methods. Broadly, they can be cate-
gorized as K or K−1 methods, depending on which way they formulate the
conductivity coefficient. Typically a K method relates a flux to a combination
of pressure differences, while a K−1 method relates a pressure difference to a
combination of fluxes. Cell-centered finite difference and mixed finite element
methods are standard representatives of these respective groups. Quadrature,
mass lumping, and incomplete inversion of the mass matrix appear to be the
concepts that can illuminate the interconnections between various schemes.
Further study of these issues, particularly in 3-D, should be of significant
benefit for practical modeling of flow in porous media.
Acknowledgments. This research was supported in part by Natio-
nal Science Foundation Grant No. DMS-9706866 and Army Research Office
Grant No. 37119-GS-AAS.
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Parallel Methods for Solving Time-Dependent
Problems Using the Fourier-Laplace

Transformation

Dongwoo Sheen

Abstract

In this paper we summarize recent progresses on the parallel me-
thod for solving time-dependent problems using the Fourier-Laplace
transformation. These problems arise in the study of elastic wave
equations with absorbing boundary conditions, for example. Instead
of solving the time-dependent problems in the space-time domain, we
solve them as follows. First, take the Fourier-Laplace transformation
of given problems originally set in the space-time domain, and consider
the corresponding problems in the space-frequency domain which form
a set of indefinite, complex-valued elliptic problems. Such problems are
solved in a natural parallel manner since each problem is independent
of others. The Fourier-Laplace inversion formula will then recover the
solution in the space-time domain.

KEYWORDS: parallel method, Fourier-Laplace transform, parabolic and hy-
perbolic problems

1 Introduction

A direction of solving in parallel a certain class of time-dependent problems
will be discussed in this paper. Time-dependent problems are usually solved
by using efficient time-marching algorithms, such as backward Euler, Crank-
Nicolson, or any higher order methods. However, the nature of time marching
essentially blocks the usual attempt to parallelize such algorithms along the
time axis, since they require the knowledge of the solutions at previous time
steps in order to advance to the next time step. The spirit of time mar-
ching is in the sequential computing rather than in the parallel computing.
Therefore, when time-marching algorithms are to apply for time-dependent
problems, parallelization is naturally sought in solving space problems for
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each time step using the solutions solved at previous time steps. In this di-
rection, domain decomposition methods have been used in the past decade by
decomposing the space domain into several subdomains and solving resulting
elliptic problems restricted to subdomains for each time step. For such a di-
rection, we refer [1, 2, 7, 8, 9, 10, 17] and so on, as well as recent publications
in major numerical analysis journals. However, these methods require heavy
communication cost among processors in order to pass informations between
neighboring subdomains.

In 1993 and the subsequent year Douglas et al. [4, 3, 19] analyzed and
solved acoustic and elastic wave equations in the space-frequency domain af-
ter taking in time the Fourier transforms of the original space-time problems,
and then the solutions in the time-space domain are obtained by the inversion
formula. Since the frequency has no hierarchy, Fourier-transformed elliptic
problems can be solved in parallel in arbitrary order without any data com-
munication. This provides a basis for natural parallelism. After these works,
with the aid of several coworkers the author has been developing the theory
and extending its applications to viscoelasticity, parabolic problems, and li-
nearized Navier-Stokes equations. See [5, 11, 16, 20, 15, 14, 12, 20]. This
paper essentially surveys in brief such approaches for solving time-dependent
linear initial-boundary value problems via Fourier-Laplace transformation.
However, we give a general setting for the description of problems and a
unified approach to solve them.

2 The Algorithm

2.1 The Model Problem

Let Ω be a Lipschitz domain in Rd, d = 2, 3 and ∂Ω its boundary. Set
J = (0,∞). Consider the following problem: given f = f(x, t), g = g(x, t)
u0 = u0(x), and u1 = u1(x), find u = u(x, t) such that

a
∂2u

∂t2
+ b

∂u

∂t
+ Au = f(x, t), (x, t) ∈ Ω × J,

ac
∂u

∂t
+ Bu = g(x, t), (x, t) ∈ ∂Ω × J,

u(x, 0) = u0(x), a(
∂u

∂t
(x, 0) − u1(x)) = 0, x ∈ Ω.

(2.1)

Here, and in what follows, we assume that all the coefficients a, b, and c de-
pend only on the space variable and are nonnegative, A is a time-independent,
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symmetric, elliptic operator, and B is another time-independent, symmetric
operator. Prototypes for A and B are the −∆ and ∂

∂ν , where ν denotes the
unit outward normal to ∂Ω. Also it will be assumed that f(x, t) = g(x, t) =
0, t < 0. (2.1) covers parabolic and hyperbolic initial-boundary value pro-
blems in the cases of a = 0 and a > 0, respectively. If a = 1, b = 0, c =
1,A = −∆, and B = ∂

∂ν , problem (2.1) describes the wave equation with the
first-order absorbing boundary condition.

In the sequel, problem (2.1) is assumed to be well-posed and numerical
methods for solving it will be our main interests.

2.2 The Transformed Problem

Recall first that the Fourier-Laplace transform in time v̂(·, ζ), ζ = σ + iω =
σ(ω) + iω, of a real-valued function v(·, t) vanishing for t < 0 is defined by

v̂(·, ζ) =
∫ ∞

0
e−ζtv(·, t)dt, (2.2)

and if v is square integrable in t, that is
∫ ∞
0 |v(·, t)|2dt < ∞, the inversion

formula
1

2πi

∫
Γ
eζtv̂(·, ζ)dζ =

{
v(·, t), t ≥ 0,
0, t < 0,

(2.3)

holds, where Γ is a contour in the complex half-plane C with Re (ζ) ≥ 0,
and the integration is evaluated as Re ζ on the contour is increasing. If the
integral in (2.2) converges for ζ0 = σ0 + iω0, it converges absolutely and
uniformly for all ζ with Re (ζ) > Re (ζ0). The contour Γ will retain as a
straght line (i.e., σ(ω) is a constant function) if equation (2.1) is hyperbolic,
and it can be deformed into the left half plane so that the spectrum of −A lies
to the left side of the contour since the semigroup related with the parabolic
problem will be analytic [20]. Let us restrict the contour Γ to be symmetric
with respect to the real axis, and denote by Γ+ the upper half part of Γ lying
above the real axis. Then, using v̂(·, ζ) = v̂(·, ζ), the inversion formula (2.3)
takes the simpler form:

1
π

Im
∫

Γ+

eζtv̂(·, ζ)dζ =

{
v(·, t), t ≥ 0,
0, t < 0.

(2.4)

Assume that u(x, ·), ut(x, ·), and autt(x, ·) are square integrable in the
second variable. Then, utilizing

ût(·, ζ) = ζû(·, ζ) − u(·, 0), ûtt(·, ζ) = ζ2û(·, ζ) + ζu(·, 0) − ut(·, 0),
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problem (2.1) can be transformed into the following set of complex-valued
elliptic problems for ζ on Γ+: find û = û(·, ζ) such that

(aζ2 + bζ + A)û(·, ζ) = f̂(·, ζ) − a(ζu0(·) − u1(·)) + bu0(·) in Ω,

(acζ + B)û(·, ζ) = ĝ(·, ζ) − acu0(·) on ∂Ω.
(2.5)

Some remarks should be made on problem (2.5).
Remark 2.1. In the hyperbolic case, that is a > 0, the above problem

is of Helmholtz type. Thus if, in addition, acB = 0 and b = 0, it turns out
to be an eigenvalue problem and existence is not guaranteed for arbitrary
ζ = iω on the imaginary axis; otherwise, existence and uniquenss follow
immediately. However, if acB 6= 0 for all x, solvability follows from the
unique continuation principle and the Fredholm alternative. See [4, 3] for the
acoustic wave problem and [18, 19] for the elastic wave case with absorbing
boundary conditions.

In the parabolic case, solvability is gauranteed with a Dirichlet, Neumann,
or Robin boundary condition [16, 15, 20]

Remark 2.2. The Fourier transformation (i.e, ζ = iω) has been conside-
red in [4, 3, 19, 11, 13, 16, 15, 14, 12], while Fourier-Laplace transformation
has been applied in [20].

2.3 The Fully-Discretization

For ζ ∈ Γ, the solution to problem (2.5) can be approximated by any of the
finite element, finite difference, or finite volume method, which is denoted by
ûh(·, ζ) so that it is a solution to the discrete problem:

(aζ2 + bζ + Ah)û(·, ζ) = f̂(·, ζ) − a(ζu0(·) − u1(·)) + bu0(·) in Ω,
(acζ + Bh)û(·, ζ) = ĝ(·, ζ) − acu0(·) on ∂Ω,

(2.6)

with Ah and Bh being suitable discrete approximations to A and B, respec-
tively.

Then the semidiscrete approximation uh(·, t) to the solution of (2.1) can be
obtained by using the inversion formula (2.4). We trun to the numerical eva-
luation of the indefinite integral (2.4). For this, it may be useful to transform
Γ+ into a finite contour by a smooth monotone function ψ : (0,∞) → [0, 1]
such that ψ(0,∞) = [0, 1]. In [20] ψ(ω) = e−ωτ/q is used with parameters τ
and q, which will be explained later. Also in [21], ψ(ω) = tanh(τω) is used.
To evaluate the resulting integral on the transformed compact contour, we
then apply standard composite quadrature rules of order q based on an N
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uniform subdivision of the compact contour. Let yj , wj , j = 0, · · · , N be sui-
table quadrature points and weights on [0, 1] of order q accuracy. Then, for
the fully-discrete approximation uh,N to the solution u(·, t) of (2.1), we have

uh,N (·, t) =
1
π

Im
N∑
j=0

e{σ(ψ−1(yj))+iψ−1(yj)}tûh
(·, σ(ψ−1(yj)) + iψ−1(yj)

)
{
σ′(ψ−1(yj)) + i

} dψ−1

dy
(yj)wj ,

since

uh(·, t)= 1
2πi

∫
Γ
eζtûh(·, ζ) dζ

=
1
π

Im
∫

Γ+
eζtûh(·, z) dζ

=
1
π

Im
∫ ∞

0
e{σ(ω)+iω}tûh (·, σ(ω) + iω) {σ′(ω) + i}dω

=
1
π

Im
∫ 1

0
e{σ(ψ−1(y))+iψ−1(y)}tûh

(·, σ(ψ−1(y)) + iψ−1(y)
)

{
σ′(ψ−1(y)) + i

} dψ−1

dy
(y)dy.

Remark 2.3. Observe that ûh
(·, σ(ψ−1(yj)) + iψ−1(yj)

)
is independent

of t. This is a crucial fact to our parallel method to be effective as for each j,
ûh

(·, σ(ψ−1(yj)) + iψ−1(yj)
)

can be computed as solutions to Problem (2.6)
simultaneously.

Remark 2.4. For efficient calculation of the approximation solution with
the transformation ψ(ω) = e−ωτ/q it is recommended to choose the parameter
τ such that t ∈ (τ, qτ ] where t is the time for the solution to be calculated.

2.4 The Algorithm

We summarize the algorithm in the following form.
Let q be the accuracy of the quadrature rule on [0, 1], and choose appro-

priate contour Γ+ and the transformation function ψ.

Algorithm
Step 1. Take the Fourier-Laplace transformation of the given problem

(2.1), and obtain the transformed problem (2.5).
Step 2. Apply any spatial discreteization to (2.5) and solve the resulting

problem (2.6) in parallel.
Step 3. By the inversion formula (2.4), obtain the solution uh,N .
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3 Applications

3.1 Parabolic Problems: Initial Value Problems

We will abstract some results from [20] which will appear somewhere else.
Consider the initial value problem:

ut − ∆u = 0, for t > 0, with u(0) = u0. (3.1)

Then solve the transformed complex-valued elliptic problems:

ζû− ∆û = u0, for Re ζ ≥ −γ,

for all ζ on a contour Γ = Γγ = {ζ = −γ−ω±iω;ω ≥ 0} with Im ζ increasing
from −∞ to ∞.

The solution u(t) of (3.1) is then obtained by the inversion formula after
the application of the transformation ψ(ω) = e−ωτ/q.

The following error analysis has been obtained in [20].

Theorem 3.1 Let uN (t) denote the semidiscrete approximation to the solu-
tion u(t) of the homogeneous inital value problem obtained using the above
method. then there exists C = C(λ0 − γ) > 0, such that

‖uN (t)−u(t)‖ ≤ C‖u0‖e−γt




1
Nq

( 1 + tq

τ q(1 + t− τ)
+
tq

τ q
log+

1
t− τ

)
, t > τ,

1
Nq

(
log logN +

1
τ q

+ log+
1
τ

)
, N ≥ 3, t = τ,

1
Nqt/τ

(1 + τ q

τ q
+ log+

1
τ − t

+ log+
1
t

)
,

where 0 < t < τ in the last one.

The fully-discretized error ‖uh,N − uN‖ is then the usual finite element,
or finite difference error plus the error in the above theorem.

3.2 Parabolic Problems: Inhomogeneous Problems

We consider the initial value problem:

ut − ∆u = f, for t > 0, with u(0) = 0.

Then solve the transformed complex-valued elliptic problems:

ζû− ∆û = f̂ ,
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for all ζ on a contour Γ = Γγ = {ζ = iω;ω ≥ 0}, which is the ususal Fourier
transformation taken.

Again the solution u(t) is obtained by the Fourier inversion formula.

u(t) =
1

2πi

∫
Γ
eζtR(ζ; −A)f̂ dζ =

1
π

Im
∫

Γ+
eζtû(ζ) dζ for t > 0.

For more details of analysis concerning this approach, we refer to [16, 14], for
instance.

3.3 Hyperbolic Problems with Absorbing Boundary Con-
ditions

We consider the initial value problem:

utt − ∆u = f, Ω × (0,∞),

ut +
∂u

∂ν
= 0, ∂Ω × (0,∞),

u(0) = ut(0) = 0, Ω.

Take the Fourier transform (ζ = iω) to the above equation to get

−ω2û+ ∆û = f̂ , Ω,

iωû+
∂u

∂ν
= 0, ∂Ω,

for all ω.
Again the solution u(t) is obtained by the Fourier inversion formula

u(t) =
1
π

Im
∫

Γ+
eζtû(ζ) dζ for t > 0,

For this approach, see [4, 3].

3.4 Other Applications

For the elastic wave equations with absorbing boundary conditions, the above
approach with Fourier transformation has been applied [19]. The method of
applying Fourier transformation has been used to treat viscoelastic problems
in [11, 12], and linearized Navier-Stokes equations in [15]. Also, an application
to solve certain class of semilinear parabolic problems is now in progress by
Ganesh and the author [6].
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Cascadic Multigrid Methods for
Parabolic Pressure Problems

Zhong-Ci Shi Xuejun Xu

Abstract

In this paper we develop the cascadic multigrid method for para-
bolic problems, which arise as the pressure equations for the flow of
compressible fluids in porous media. The optimal convergence accu-
racy and computation complexity are obtained.

KEYWORDS: cascadic multigrid, finite element, parabolic problem

1 Introduction

Bornemann and Deuflhard [2, 3] have presented a new type of multigrid
method, the so-called cascadic multigrid. Compared with usual multigrid
methods, it requires no coarse grid corrections at all that may be viewed
as a “one way” multigrid. Another distinctive feature is that it performs
more iterations on coarser levels so as to obtain less iterations on finer levels.
Numerical experiments show that this method is very effective for second
order elliptic problems.

In this paper we consider the cascadic multigrid for parabolic problems,
which arise as the pressure equations for the flow of compressible fluids in
porous media. Here we must treat the effect of discrete time steps. As pointed
out in [1], for a small time step τ ≤ O(h2), where h is the space mesh size,
some standard iterative methods, like the Richardson iteration, can guarantee
a good convergence for the discrete system. But for a relative large time step
τ , [1] recommended multigrid methods; see [4] for details. Now, we consider
to use the cascadic multigrid. Similar to second order elliptic problems,
it is proved that the cascadic multigrid with the conjugate gradient (CG)
iteration as a smoother is accurate with the optimal complexity in 2D and
3D and nearly optimal in 1D. As for other traditional iterative methods,
like the Richardson iteration, the cascadic multigrid still yields the optimal
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accuracy and complexity in 2D and 3D and in a certain case of 1D. Notice
that for the second order elliptic problem, the cascadic multigrid with these
iterative methods gives the optimal accuracy and computation complexity
only in 3D and nearly optimal in 2D. They cannot be used for 1D.

2 Model Problem and Its Finite Element

Consider the parabolic problem: Find u(x, t) such that

∂u

∂t
+ Lu = f in Ω × [0, T ],

u(x, t) = 0 in ∂Ω × [0, T ],
u(x, 0) = u0(x),

(2.1)

where Ω ⊂ Rd (d = 1, 2, 3) is a bounded domain, f ∈ L2(Ω), and L is an
elliptic operator

Lu = −
d∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
).

Here aij(x) satisfies

cξtξ ≤
d∑

i,j=1

aijξiξj ≤ Cξtξ ∀x ∈ Ω, ξ ∈ Rd,

where c and C are positive constants. The variational form of (2.1) is to find
u ∈ H1

0 (Ω), u(x, 0) = u0(x) such that

(
∂u

∂t
, v) + B(u, v) = (f, v) ∀v ∈ H1

0 (Ω), t ∈ [0, T ],

where

B(u, v) =
∫
Ω

d∑
i,j=1

aij
∂u

∂xj

∂v

∂xi
dx ∀u, v ∈ H1(Ω),

(f, v) =
∫
Ω fvdx.

We use the backward Euler scheme and Crank-Nicolson scheme for the time
discretization [8]. Both schemes are absolutely stable [6]. Let 4tn be the nth
time step and M the number of steps. Then

∑M
n=1 4tn = T . Consider the

problem: For a given function gn−1 ∈ H−1(Ω), find w ∈ H1
0 (Ω) such that

Aτ (w, v) = τ−1(w, v) + B(w, v) = (gn−1, v) ∀v ∈ H1
0 (Ω), (2.2)

where τ is the time step parameter. For the backward Euler scheme, we have

w = un − un−1, τ = 4tn, (gn−1, v) = (f, v) − B(un−1, v),
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and for the Crank-Nicolson scheme,

w = un − un−1, τ = 4tn/2, (gn−1, v) = 2((f, v) − B(un−1, v)).

Now we define the τ -norm by

‖v‖2
τ = τ−1(v, v) + B(v, v) ∀v ∈ H1

0 (Ω).

Let Γl (l ≥ 0) be a quasiuniform triangular partition of Ω with the mesh
size hl = h02−l. Γl is obtained by linking the midpoints of three edges of
triangles on Γl−1. We assume that Ω̄ = ∪K∈Γl

K̄. Let Vl denote the P1-
conforming finite element space on Γl. Then we obtain the discrete form of
(2.2): Find ul ∈ Vl such that

Aτ (ul, vl) = (g, vl) ∀vl ∈ Vl. (2.3)

Define the operator Al,τ : Vl → Vl by

(Al,τul, vl) = Aτ (ul, vl) ∀ul, vl ∈ Vl.

Then (2.3) can be expressed by

Al,τul = gl, (2.4)

where gl ∈ Vl, (gl, v) = (g, v) v ∈ Vl.

3 Cascadic Multigrid Method

We use the cascadic multigrid to solve (2.4) at each time step. Define the
cascadic algorithm for (2.4) as follows: (1) set u0

0 = u∗
0 = u0 and let u0

l = u∗
l−1;

(2) for l = 1, . . . , L, set uml

l = Cml

l,τ u0
l ; (3) set u∗

l = uml

l , where Cl,τ denotes
the Richardson iteration procedure, i.e.,

ul − Cml

l,τ u0
l = Tml

l,τ (ul − u0
l ) = (I − Rl,τAl,τ )(ul − u0

l ).

Here Rl,τ = (λl + τ−1)−1I and λl = O(h−2
l ).

Following [2], we call a cascadic multigrid method optimal on the level L

if we obtain both the accuracy

‖uL − u∗
L‖τ ≈ ‖u − uL‖τ ,

which means that the iterative error is comparable to the approximation
error, and the multigrid complexity

amount of work = O(nL),
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where nL = dimVL. Note that hl = hL2L−l.
Consider sequences m1, m2, . . . , mL of the kind

ml = [βL−lmL], (3.1)

for some fixed β > 0, where [·] means the choosing integral function. If τ

satisfies that τ ≤ λ−1
L , based on the observation in [1], we know that some

usual iterative methods, like the Richadson iteration, can already guarantee
good convergence. Therefore, we only consider the case where τ ≥ λ−1

L . In
such case, for any fixed τ , we can find a positive constant 0 < γ0 < 1 which
satisfies

τ ≤ λ−1
L /γ0, (3.2)

where γ0 is dependent of τ .
Theorem 3.1. The accuracy of the cascadic multigrid with the Richard-

son iteration for the parabolic problem is

‖uL − u∗
L‖τ ≤ C

hL

m
1
2
L

1
1 − 2

β
1
2 (1+γ0)

‖g‖0 for β > (
2

1 + γ0
)2,

where β and mL are defined in (3.1) and τ is in (3.2).
According to Lemma 1.4 in [2], we have
Lemma 3.1. The computational cost of the cascadic multigrid is propor-

tional to
L∑

l=1

mlnl ≤ C
1

1 − β
2d

mLnL for β < 2d.

Theorem 3.1 indicates that a large β can yield an optimal accuracy. Me-
anwhile, Lemma 3.1 shows that the optimal complexity of the method can
be achieved only for a small β. Therefore, we have

Theorem 3.2. If β in (3.1) satisfies

(
2

1 + γ0
)2 < β < 2d, d = 1, 2, 3,

then both the optimal accuracy and complexity of the cascadic multigrid with
the Ricchardson iteration can be obtained.

Remark 3.1. From Theorem 3.2, it is seen that the cascadic multigrid
with the Richardson iteration gives the optimal accuracy and complexity for
2D and 3D parabolic problems. But for 1D problem, it requires that the
parameter β must be chosen to satisfy

(2/(1 + γ0))2 < β < 2,
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which turns out that the value γ0 in (3.2) should be greater than 21/2 − 1
that prevents choices of a relatively large time step parameter τ , say of order
h in the Crank-Nicolson scheme.

Remark 3.2. Compared with the parabolic case, for 3D elliptic pro-
blems, the cascadic multigrid with the Richardson iteration gives the opti-
mal accuracy and complexity. But for the problem in 2D, it gives only nearly
optimal complexity. It cannot be used for 1D elliptic problems at all [2, 7].

4 Conjugate Gradient Method

Assume that u0
l is an initial value of the CG method on the level l. Let Cml

l,τ u0
l

be the ml steps of the CG iteration. Then the error of the CG method can
be expressed by

‖ul − Cml

l,τ u0
l ‖τ = min

p∈Pml
,p(0)=1

‖p(Al,τ )(ul − u0
l )‖τ ,

where Pml
denotes the set of polynomials p with degree ≤ ml [3].

Using a same argument of Theorem 2.2 in [2], we have
Lemma 4.1. There exists a linear operator Tl,τ = φλl,ml

(Al,τ ), where
φλ,m ∈ Pm and φλ,m(0) = 1, such that

‖Tml

l,τ vl‖τ ≤ (λl + τ−1)
1
2

2ml + 1
‖vl‖0, ‖Tml

l vl‖τ ≤ ‖vl‖τ ∀vl ∈ Vl.

Using Lemma 4.1 and following the same line of Lemma 1.3 as in [2], we
have

Lemma 4.2. Assume that the time step parameter τ ≥ O(h2
L). Then

the accuracy of the cascadic multigrid with the CG method as smoother is

‖uL − u∗
L‖τ ≤




C
1

1 − ( 2
β )

hL

mL
‖g‖0 for β > 2,

CL
hL

mL
‖g‖0 for β = 2.

Remark 4.1. It should be noticed that the assumption on the time
step parameter τ ≥ O(h2

L) in Lemma 4.2 is not a real restriction since we can
always assume τ = O(h2

L) for the backward Euler scheme and τ = O(hL)
for the Crank-Nicolson Scheme. Moreover, as pointed out in [1], for a small
time step parameter τ ≤ O(h2

L), some standard iterative methods alone are
efficient enough to guarantee a good convergence.
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Combining Lemma 4.2 with Lemma 1.4 in [2], we get
Theorem 4.1. (1) For 2D and 3D parabolic problems, the optimal accu-

racy and complexity can be obtained for the cascadic multigrid with the CG
iteration. (2) For 1D parabolic problems, if we choose β = 2 and the number
of iterations on the level L is

mL = [m∗L],

then the error of the cascadic multigrid method is

‖uL − u∗
L‖τ ≤ C

hL

m∗
‖g‖0

and the complexity of computation is

L∑
l=1

mlnl ≤ cm∗nL(1 + lognL)2.

Remark 4.2. Besides the P1 conforming finite element, the above results
are also valid for other conforming or nonconforming finite elements of the
second order problem (see [7]).

Remark 4.3. In practical computation, the right hand term gl in (2.4) is
related to the cascadic multigrid solution of the last time step. According to
[8], the backward Euler and Crank-Nicolson scheme are absolutely stable, so
the small perturbation of right hand term in (2.4) still assure the efficiency
of our algorithm.
Acknowledgments. The authors thank Dr Mo Mu and Dr Qiang Du of
Hong Kong University of Science and Technology for useful discussions.
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Estimation in the Presence of Outliers:
The Capillary Pressure Case

Sam Subbey Jan-Erik Nordtvedt

Abstract

The inversion of laboratory centrifuge data to obtain capillary pres-
sure functions in petroleum science leads to a Volterra integral equation
of the first kind with a right-hand side defined by a set of discrete data.
The problem is ill-posed in the sense of Hadamard [4]. The discrete
data lead to a discretized equation of the form

A~c = ~b + ~ε,

where~b represents the observation vector, A is an ill-conditioned matrix
derived from the forward problem, ~c is the coefficients in a representa-
tion of the inverse capillary function, i.e., parameters to be determined,
and ~ε is the error vector associated with ~b. If ~ε ∼ N(0, σ2), and satis-
fies the Gauss-Markov (G-M) conditions, then an estimate, ~cλ, of ~c is
BLUE [9]. In the presence of outliers, the G-M conditions and/or the
normality assumption can be violated.

In this paper we parameterize the capillary pressure function using
B-splines and address the issue of ill-posedness by reformulating the
problem as a constrained optimization task involving the determination
of the spline coefficients. By the nature of the experimental procedure,
we expect the G-M conditions to be satisfied. A systematic method of
outlier elimination and a choice of knots is employed to ensure satisfac-
tion of the normality assumption and thereby derive capillary pressure
curves to a high degree of accuracy. A robust method for estimating
the solution curve, which accommodates both outliers and influential
points, namely the L1-norm solution, is also presented. The method is
demonstrated on synthetic data.

KEYWORDS: Volterra, outliers, ill-posed, regularization, capillary pressure,
estimation
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1 Introduction

The problem of determining capillary pressure functions from centrifuge data
leads to an integral equation of the form

∫ x

a

K(x, t)f(t)dt = g(x), x ∈ [a, b], (1.1)

where the kernel K is known exactly and given by the underlying mathema-
tical model, g is only known with a certain degree of accuracy in a finite set
of points x1, . . . , xM , and the sought function f(t) is however continuous. By
the nature of the right-hand side, g(x), eq. (1.1) is a discrete inverse problem
which is ill-posed in the sense of Hadamard [4]. By a parameterization of the
sought function, eq. (1.1) reduces to a system of linear equations of the form

A~c = ~b + ~ε, (1.2)

where ~b is the observation vector, A arises from discretization of the forward
problem, ~ε is the error vector associated with ~b, and ~c contains the model
parameters. The matrix A is usually ill-conditioned. The ill-conditioning is
closely connected to the parameterization of the probelm. As the dimension
of the parameters increases, the spectra of A become increasingly dominated
by very low singular values. Thus the condition of A increases with the
increasing parameter dimension.

The usual assumption is that ~ε satisfies the following conditions:

E(εi) = 0, E(ε2i ) = σ2, E(εi, εj) = 0 when i 6= j. (1.3)

Eqs. (1.3) above are the Gauss-Markov (G-M) conditions. To be able to
choose between the feasible vectors ~c, we introduce a merit number to define
the goodness of fit associated with a feasible vector ~c. Suppose we have M

observations; we form the vector ~δ ∈ RM by setting

δi = bi − ar~c i = 1, . . . , M, (1.4)

where ar refers to the rth row of the matrix A and δi defines the residual
for data point i, i.e., the difference between the measured values bi and the
calculated value.

We first make the assumption that the εi’s are normally distributed. If
we maintain this assumption and in addition assume that the G-M conditi-
ons hold, then the residuals δi’s are independently and normally distributed



Estimation in the Presence of Outliers 301

Figure 1:

Figure 1: Schematic diagram of the centrifuge system.

with zero mean and a variance of σ2, i.e., δi ∼ N(0, σ2), [9]. If this is the
case, then the least square (L2) solution of eq. (1.2) is theoretically optimal,
i.e., has the least variance. In fact, it is the best linear unbiased estimate
(BLUE) [9]. In practice, it is frequently assumed that experimental errors
are normally distributed. This and the fact that of all Lp-norms only the L2-
norm approach is linear account in part for the popular use of the L2-norm
solution approach.

A single point or a small number of points may violate either or both
of our basic assumptions of normality and G-M conditions. A solution in
L2-norm will then not be theoretically optimal. These points which violate
one or all of the G-M conditions and/or the normality assumption are termed
outliers. In essence, we define an outlier as an observation inconsistent with
the assumed model of the random process generating the observations.

In this paper, by the nature of the experimental process, we expect the
G-M conditions to be satisfied. We concern ourselves with the case when the
normality assumptions are violated. We demonstrate a method for testing
small sample data for the normality assumption and show how a systematic
outlier detection and elimination can be employed to obtain the satisfac-
tion of the normality condition and thereby a solution in the L2-norm. We
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demonstrate this on the ill-posed problem of determining capillary pressure
functions from centrifuge data. We show how capillary pressure curves can
be estimated by reformulation of the problem as a constrained optimization
task where the constraints are dictated by the physics of the problem.

In a situation where the outlier accommodation rather than elimination
is required, we present a robust method for estimating the capillary pressure
functions namely the L1-norm solution. Here we treat only drainage capillary
pressure curves.

2 The Physical Problem

From Fig. 1, the pressure at a radius r, ri ≤ r ≤ re, is given by

Pi(r, ω) = ρiω
2(r2

e − r2)/2. (2.1)

By assumption, the capillary pressure Pc = Pnw − Pw = 0 at r = re. Hence

Pc(ri, ω) =
1
2
∆ρω2(r2

e − r2
i ). (2.2)

The average saturation of the porous medium is defined as

S =
1

re − ri

∫ re

ri

S(r)dr. (2.3)

We substitute eq. (2.2) into eq. (2.3), and by a change of variables arrive at
eq. (2.4) that relates the average core saturation, S, measured at the outlet,
the capillary pressure, Pc(ω) and the sought point-saturation along the core,
S. Thus, based on experimental data we need to invert:

S(Pc(ri, ω)) =
∫ Pc(ri,ω)

0
K(Pc(ri, ω), Pc(ω))S(Pc(ω))dPc(ω), (2.4)

where

K(Pc(ri, ω), Pc(ω)) =
1 + ri

re

2Pc(ri, ω)
1√{

1 − Pc(ω){1−{ ri
re

}2}
Pc(ri,ω)

} .

Eq. (2.4) above is a Volterra integral equation of the first kind. It is ill-posed
and has numerical instabilities. Higher order numerical methods will there-
fore diverge. The equation may be reformulated into the Volterra equation of
the second kind which is more stable but this is not recommended as this will
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involve the numerical differentiation of data. The equation must therefore
be regularized. Among the methods of regularization which have proven be
effective in solving eq. (2.4) are the Tikhonov regularization and the regula-
rization by convexity constraints [10]. In this paper regularization is carried
out in two stages. A pre-regularization by adequate paramterization to sa-
tisfy the normality condition is followed by regularization by imposition of
convexity constraints.

3 Problem Formulation

We parameterize eq. (2.4) above by representing S(Pc(ω)) by an mth order
B-Spline as

S(Pc(ω)) =
N∑

j=1

cjN
m
j (Pc(ω), ~y). (3.1)

Here Nm
j are the normalized B-spline basis functions, ~y is the spline partition,

the cj ’s are the spline coefficients, and N is the number of the basis functions,
otherwise refered to as the spline dimension. Substitute eq. (3.1) into eq. (2.4)
to arrive at

S(Pc(ri, ω)) =
N∑

j=1

cj

∫ Pc(ri,ω)

0
Nm

j (Pc(ω), ~y)K(Pc(ri, ω), Pc(ω))dPc(ω).

We split the integral above into two parts; from the zero capillary pressure
to the displacement threshold pressure Pcd and from Pcd to the capillary
pressure at the inner face of the core. We know that S(Pc(ω)) = 1, for
0 ≤ Pc(ω) ≤ Pcd, and define

f(Pcd, ω) =
∫ Pcd

0
K(Pc(ri, ω), Pc(ω))dPc(ω). (3.2)

Thus we have

S(Pc(ri, ω)) − f(Pcd, ω)

=
∑N

j=1 cj

∫ Pc(ri,ω)
Pcd

Nm
j (Pc(ω), ~y)K(Pc(ri, ω), Pc(ω))dPc(ω).

(3.3)

Pcd enters into eq. (3.3) nonlinearly through f(Pcd, ω) in eq. (3.3) and must
be determined using the experimental data. A zero order search is per-
formed within the range 0 ≤ Pcd < Pc(ω)|S(Pc(ri,ω))<1 for the optimal va-
lue. Pc(ω)|S(Pc(ri,ω))<1 stands for the first experimental capillary pressure
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for which the average water saturation is less than unity. Here we for sim-
plicity assume that Pcd is known. The Pcd problem can be easily handled as
outlined above; for a more complete analysis; see [10]. S(Pc(ri, ω)) has been
measured at M points (Pc(ωk), k = 1, . . . , M ) and the saturation values
(S(Pc(ri, ωk)), k = 1, . . . , M) have been obtained in the form of readings.
We therefore write the equation above as, k = 1, . . . , M ,

S(Pc(ri, ωk)) − f(Pcd, ωk)

=
∑N

j=1 cj

∫ Pc(ri,ωk)
Pcd

Nm
j (Pc(ω), ~y)K(Pc(ri, ωk), Pc(ω))dPc(ω).

(3.4)

We note that eq. (3.4) constitutes a system of linear equations of the form

~b = A~c, (3.5)

where ~c contains the spline coefficients and the elements in the matrix A are
given by the integral over the basis functions. We define

bi = S̄(Pc(ri, ωi)) − f(Pcd, ωi),

Ai,j =
∫ Pc(ri,ωi)

Pcd
Nm

j (Pc(ω), ~y)K(Pc(ri, ωi), Pc(ω))dPc(ω),

i = 1, . . . , M, j = 1, . . . , N.

By the physics of the problem we require that the solution curve satisfy
monotonicity and convexity constraints [10]. Monotonicity translates into
demanding that the N -coefficients of our splines are ordered according to

1 ≥ c1 ≥ c2 ≥ c3 . . . ≥ cN ≥ 0.

For m = 3, the above is a necessary and sufficient condition for monotonicity
[7] and can be expressed in matrix form as

E~c ≥ ~F ,


−1 0 0 . . . 0 0 0
1 −1 0 . . . 0 0 0
0 1 −1 0 . . . 0 0
...
0 0 0 . . . 0 1 −1
0 0 0 . . . 0 0 1







c1

c2

...
cN−1
cN




≥




−1
0
...
0
0




.

By convexity constraints, we require that the second derivative of the ca-
pillary pressure function be positive. The second derivative of a B-spline
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expressed as a third order polynomial is

d2

dPc(ω)
(al,jP

2
c (ω) + bl,jPc(ω) + cl,j) = 2al,j .

The coefficients al,j are known since they have to be derived during the
formation of matrix A. Our convexity constraint translates into a matrix
equation of the form

G~c ≥ ~H,

where H is an N −2 column vector with zero elements and G is a (N −2×N)
matrix defined as

G(l, j) =
{

2al,j , j = l(1)l + 2,
0 Otherwise

Based on our assumptions that the nature of our experimental procedure
guarantees a satisfaction of the G-M conditions, if we further assume that
the residuals resulting from the solution of eq. (3.5) are normally distributed,
then a solution in the L2-norm, expressed through eq. (3.6), is the BLUE of
~c. However, due to the ill-conditioned nature of the system, we still need to
regularize the system by introducing monotonicity and convexity constraints
in the form of eq. (3.7). Hence the task is reduced to

min~c‖~b − A~c‖2, (3.6)

subject to [
E
G

] [
~c

] ≥
[

F
H

]
. (3.7)

4 Checking the Normality Assumption

We adopt two methods of test, namely an approximate rankit plot and a
Shapiro-Wilk normality statistic check. We discuss them briefly in this sec-
tion.

4.1 Rankit Plot

If δ(1) < δ(2) < . . . < δ(M) are ordered values of M independent and identi-
cally distributed N(µ, σ2) random variables, then (see [2])

E[δ(i)] ≈ µ+γi, γi = σ ·Φ−1[(i−3/8)/(M +1/4), Φ(x) =
1√
2π

∫ x

−∞
e− 1

2 t2dt.
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From this equation a plot of δ(i) against γi, where δ(i) are the ordered values
of δi, can give an approximately straight line. In that case the residuals
could be taken to be approximately normally distributed and the errors to
be approximately normal.

4.2 Shapiro-Wilk Test

If we assume the same distribution for δ(i) as above and set

s2 =
1

(M − 1)

M∑
i=1

(δi − δi)2, δi =
1
M

M∑
i=1

δi,

then the Shapiro-Wilk test statistic is given by

W =
M∑
i=1

aiδ(i)/s, 0 < W < 1,

where a1, . . . , aM depend on the expected values of the order statistic from
a standard normal distribution and are tabulated in Shapiro-Wilk [8]. We
reject the null hypothesis of normality if W ≤ Wα, where Wα is a tabulated
critical value, also given in [8]. Values of W close to 1 indicate near-normality.
Based on the rankit-plot and the Shapiro-Wilk statistic, we establish the fol-
lowing algorithm, where W j is the Shapiro-Wilk statistic for spline dimension
j (the spline order is held constant).

Algorithm 1 (Shapiro-Wilk and rankit plot: L2-norm)
Initialize: swap=0, dim=3

1. for κ = dim step 1 do
w = swap

if Wκ < w then goto step 2

swap = Wκ

2. if Wκ−1 ≥ Wα such that P ≥ 90%, accept null hypothesis. Adopt model
with Wκ−1, else

3. Inspect rankit plot for model with Wκ and eliminate obvious outliers.
Goto initialize.

5 Validation-Synthetic Model

Verification of the algorithm on synthetic data is attractive as our estimation
results can be compared to the true capillary pressure curve. We use a
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modified form of the parameterized capillary pressure function by Bentsen
and Anli [1] in the following form:

Pc = Pcd

(
Sw − Swi

1 − Swi

)−1/θ

.

The integral in eq. (2.4) is then given by

Sw(ω) − Swi

1 − Swi
=

L1

L
+

re

L

(
2Pcd

∆ρω2r2
e

)2 ∫ L1/re

L/re

dx

[(2 − x)x]θ
,

L1 = re

(
1 −

√
1 − 2Pcd

∆ρω2r2
e

)
.

(5.1)

Figure 2: Rankit plot & cap.pressure curve-stage 1.

Figure 3: Rankit plot & cap.pressure curve-stage 6.

Eq. (5.1) can be solved numerically for Sw(ωi). In the particular cases
shown here, we have used the parameters in this presentation as Pcd = 5kPa,
Swi = 0.1, L = 5cm, re = 9.38cm, ∆ρ = 1g/cm 3, and θ = 1. For 15 different
angular velocities, we calculate the average saturation using eq. (5.1). (In
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fact, for these parameter values, the integral is analytical). We generate data
for two cases. To include outliers we perturb the synthetic data using the
relation

S
perturbed

w (ωj) = 1.2S
true

w (ωj), j = 5, 10,

S
perturbed

w (ωj) = 0.8S
true

w (ωj), j = 6, 12.
(5.2)

All 15 data points including those perturbed above are refered to as partially
perturbed data (pp-data). We add white noise using the relation

S
meas

w (ωj) = S
pp−data

w (ωj)(1 + 0.02εS,j), j = 1, . . . , 15.

εS,j is drawn from a normal distribution with zero mean and unit standard
deviation. This constitutes our first case, case 1. For case 2, we also perturb
the last data point, 15, according to eq. (5.2).

6 Results and Discussions

Stage N max.W P min. W M

1 6 0.877 2% < P < 1% 0.821 15
2 6 0.960 50% < P < 90% 0.935 13
3 6 0.961 50% < P < 90% 0.928 12
4 6 0.952 50% < P < 90% 0.838 10
5 6 0.966 50% < P < 90% 0.928 8
6 7 0.975 P = 90% 7

Table 1: Algorithm 1-case 1.

In the first approach, the problem involing case 1 is solved by using a
spline dimension of 6 to 7, which appears to give sufficient flexibility in the
calculated capillary pressure curve. Regularization is achieved by the im-
position of convexity constraints on the solution curve, and Algorithm 1 is
employed to achieve compliance with the normality assumption.

Table 6 shows important data at the various stages of application of Algo-
rithm 1. Tabulated are the spline dimension, N , the maximum Shapiro-Wilk
statistic obtained with the corresponding percentage level, P , the minimum
Shapiro-Wilk statistic, and the number of experimental data employed at the
given stage, M .

Fig. 2 shows the rankit plots as well as the estimated capillary pressure
curves for stage 1 of Algorithm 1. The plot order of the residuals at W =
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0.821 is δ6 < δ12 < δ1 < δ3 < δ13 < δ15 < δ14 < δ2 < δ11 < δ9 < δ7 < δ8 <

δ10 < δ4. Inspection of the rankit plot at stage 1 shows that the 6th and 12th
data points (δ6, δ12) deviate considerably from any straight line about which
majority of the residuals have minimum deviation. These points could be
flagged out as possible outliers.

Fig. 3 shows the rankit plot as well as the estimated capillary pressure
curve at stage 6 of Algorithm 1. At this point, we can state, at 90% level,
that our residuals and errors are normally distributed (refer to Table 6). We
see that the estimated capillary pressure curve to a high degree reconciles
the true one. From experience, a confidence level ≥ 90% has been found to
be adequate.

Case 2 presents a unique situation where the last data point (15) is an
outlier. Algorithm 1 could still be applied to this case. Indeed, at stage 5 of
Algorithm 1, experimental data number 15 could be flagged as a possible ou-
tlier. However, from a practical point of view, it will be unwise to delete data
number 15 since we would then be unable to estimate the capillary pressure
curve in the range between the 14th and 15th average saturation values. We
therefore need a robust norm definition for the residuals which, when applied
in combination with our monotonicity and convexity constraints, accommo-
dates the outlier. This we do by the L1-norm expressed as

min~c

∑
|~b − A~c|. (6.1)

Thus we use a low-dimensional spline (N = 5) and solve eq. (6.1) subject
to the constraints in eq. (3.7) to arrive at Fig. 2. Indeed, for this case,
we adopted the spline dimension with the highest W in stage 1. Thus the
solution curve represents that which is nearest to normality in stage 1. From
Fig. 2, we realize that we are able to estimate the capillary presssure curve
to a fairly high degree, accommodating all outliers.

7 Conclusions

1. We have developed an algorithm for detecting outliers based on viola-
tion of the normality assumption.

2. Outliers can be handled through Algorithm 1.

3. In the case where the last data point is an outlier, a solution in the
L1-norm is proposed, which accommodates the outlier.
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Figure 4: Case 2 cap.pressure curve-L1-norm.
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A Comparison of ELLAM with ENO/WENO
Schemes for Linear Transport Equations

Hong Wang Mohamed Al-Lawatia

Abstract

We present an Eulerian-Lagrangian localized adjoint method (EL-
LAM) for linear advection-reaction partial differential equations in
multiple space dimensions. We carry out numerical experiments to
compare the performance of the ELLAM scheme with the essentially
non-oscillatory (ENO) schemes and weighted essentially non-oscillatory
(WENO) schemes, which shows that the ELLAM scheme outperforms
ENO and WENO schemes in the context of linear transport PDEs.

KEYWORDS: advection-reaction equations, characteristic methods, compa-
rison of numerical methods, essentially non-oscillatory schemes, Eulerian-
Lagrangian methods, transport equations

1 Introduction

Advection-dominated partial differential equations (PDEs) describe the dis-
placement of oil by injected fluid in petroleum recovery, the subsurface con-
taminant transport and remediation, and many other applications [3, 8, 19].
Because of the moving steep fronts present in their solutions, the numerical
treatment of these PDEs often presents severe difficulties. Standard finite
difference or finite element methods (FDMs, FEMs) tend to generate soluti-
ons with severe non-physical oscillations. While classical upwind FDM could
eliminate these oscillations, they yield solutions with excessive smearing and
potentially spurious effects related to the orientation of the grid. Two general
classes of improved approximations can be identified from the literature: up-
wind methods that use fixed spatial grids with some form of upwinding and
the standard temporal discretization, and the characteristic methods that
carry out the temporal discretization by characteristic tracking.

The Eulerian-Lagrangian localized adjoint method (ELLAM) [5] was in-
troduced by Celia, Russell, Herrera, and Ewing in solving (one-dimensional

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 311–323, 2000.
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constant-coefficient) advection-diffusion PDEs. The ELLAM methodology
provides a general characteristic solution procedure and a consistent frame-
work for treating general boundary conditions and conserving mass. Thus,
it overcomes the two principal shortcomings of the previous characteristic
methods while maintaining their numerical advantages. We conducted nu-
merical experiments to observe the performance of the ELLAM scheme with
many widely used methods [1, 20], including the upwind FDM, Galerkin
FEM, quadratic and cubic Petrov-Galerkin FEMs [2, 4, 6], the streamline dif-
fusion FEM [13], the continuous and discontinuous Galerkin FEMs [14, 16],
the monotone upstream-centered scheme for conservation laws (MUSCL) and
the minmod scheme [7, 18]. These experiments show that the ELLAM scheme
outperforms these methods in the context of linear transport PDEs. We also
proved optimal-order error estimates for the ELLAM schemes in [9, 10].

In this paper we present an ELLAM scheme and numerically compare
the performance of the ELLAM scheme with the essentially non-oscillatory
(ENO) and weighted ENO (WENO) schemes [11, 12, 15].

2 An ELLAM Scheme

2.1 Definition of Test Functions

We consider a multi-dimensional linear advection-reaction PDE

ct + ∇ · (vc(x, t)) + K(x, t)c = F (x, t), x ∈ Ω, t ∈ (0, T ], (2.1)

where Ω ⊂ IRd is a bounded domain with a Lipschitz continuous boundary
Γ = ∂Ω. A boundary condition

c(x, t) = g(x, t), (x, t) ∈ Γ(I) × [0, T ] (2.2)

is specified only at the inflow boundary Γ(I) identified by Γ(I) = {x | x ∈
Γ, v · n < 0}. In addition, an initial condition c(x, 0) = c0(x) is specified to
close Eq. (2.1).

We define a quasi-uniform temporal partition on [0, T ] by 0 = t0 < t1 <

t2 < . . . < tN−1 < tN = T . Multiplying Eq. (2.1) by space-time test functions
w(x, t) that are continuous and piecewise smooth, vanish outside the space-
time strip Ω×[tn−1, tn], and are discontinuous in time at time tn−1, we obtain
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a space-time weak formulation
∫

Ω
c(x, tn)w(x, tn)dx +

∫ tn

tn−1

∫
Γ
v · n c(x, t)w(x, t)dsdt

−
∫ tn

tn−1

∫
Ω

c(x, t)(wt + v · ∇w − Kw)(x, t)dxdt

=
∫

Ω
c(x, tn−1)w(x, t+n−1)dx +

∫ tn

tn−1

∫
Ω

F (x, t)w(x, t)dxdt,

(2.3)

where w(x, t+n−1) = limt→t+
n−1

w(x, t), which takes into account the fact that
w(x, t) is discontinuous in time at time tn−1.

In the ELLAM framework [5], the test functions w are chosen to satisfy
the adjoint equation of Eq. (2.1)

wt + v · ∇w − K w = 0. (2.4)

Let y = r(θ; x̄, t̄), with t̄ ∈ [tn−1, tn], be the characteristic determined by

dy
dθ

= v(y, θ), with y|θ=t̄ = x̄. (2.5)

Eq. (2.4) is rewritten as

− d

dθ
w(r(θ; x̄, t̄), θ) + K(r(θ; x̄, t̄), θ)w(r(θ; x̄, t̄), θ) = 0,

w(r(θ; x̄, t̄), θ)|θ=t̄ = w(x̄, t̄).
(2.6)

Solving Eq. (2.6) yields the following expression for w

w(r(θ; x̄, t̄), θ) = w(x̄, t̄)e−
∫ t̄

θ
K(r(γ;x̄,t̄),γ)dγ

. (2.7)

Therefore, the test functions w in Eq. (2.3) should vary exponentially along
the characteristics r(θ; x̄, t̄). Once w(x̄, t̄) is specified, w(r(θ; x̄, t̄), θ) is deter-
mined completely along the characteristic r(θ; x̄, t̄). Thus, to define the test
functions w in the space-time strip Ω × [tn−1, tn], we only need to define w

on Ω at the time tn and on the space-time outflow boundary Γ(O) × [tn−1, tn]
with Γ(O) = {x ∈ Γ | v · n > 0}.

2.2 Derivation of a Reference Equation

To avoid confusion, we replace the dummy variables x and t in the second
term on the right-hand side of Eq. (2.3) by y and θ and reserve x and t for
the points in Ω at time tn or on Γ× [tn−1, tn]. Let Ω(θ) ⊂ Ω be the set of the
points that will flow out of the domain Ω during the time period [θ, tn]. For



314 Wang and Al-Lawatia

any y ∈ Ω\Ω(θ), there exists an x ∈ Ω such that y = r(θ;x, tn). Likewise,
for any (y, θ) ∈ Ω(θ), there exists a pair (x, t) ∈ Γ(O) × [tn−1, tn] such that
y = r(θ;x, t). Therefore,∫ tn

tn−1

∫
Ω

F (y, θ)w(y, θ) dydθ

=
∫ tn

tn−1

∫
Ω\Ω(θ)

F (r(θ;x, tn), θ) w(r(θ;x, tn), θ) drdθ

+
∫ tn

tn−1

∫
Ω(θ)

F (r(θ;x, t), θ) w(r(θ;x, t), θ) drdθ.

(2.8)

The first term on the right-hand side of Eq. (2.8) is evaluated by applying
the Euler formula at time tn, leading to∫ tn

tn−1

∫
Ω\Ω(θ)

F (r(θ;x, tn), θ)w(r(θ;x, tn), θ)drdθ

=
∫

Ω

∫ tn

t∗(x)
F (r(θ;x, tn), θ)w(r(θ;x, tn), θ)|∂r(θ;x, tn)

∂x
|dθdx

=
∫

Ω
F (x, tn)w(x, tn)

[∫ tn

t∗(x)
e−K(x,tn)(tn−θ)dθ

]
dx + E1(f, w)

=
∫

Ω
φ(1)(x, tn)F (x, tn)w(x, tn)dx + E1(F, w).

(2.9)

Here the space-dependent time step ∆t(I)(x) = tn−t∗(x), where t∗(x) = tn−1

if the characteristic r(θ;x, tn) does not backtrack to the boundary Γ during
the time period [tn−1, tn], or t∗(x) ∈ [tn−1, tn] is the time when r(θ;x, tn)
intersects the boundary Γ otherwise.

φ(1)(x, tn) = (1 − e−K(x,tn)∆t(I)(x))/K(x, tn),

if K(x, tn) 6= 0, or ∆t(I)(x) otherwise. E1(F, w) is the local truncation error.
The second term on the right-hand side of Eq. (2.8) is treated similarly.

We obtain∫ tn

tn−1

∫
Ω(θ)

F (r(θ;x, t), θ) w(r(θ;x, t), θ) drdθ

=
∫ tn

tn−1

∫
Γ(O)

v · nφ(2)(x, t)F (x, t)w(x, t)dsdt + E2(F, w).
(2.10)

Here ∆t(O)(x, t) = tn − t∗(x, t) for (x, t) ∈ Γ(O) × [tn−1, tn], where t∗(x, t) =
tn−1 if r(θ;x, t) does not backtrack to the boundary Γ during the time period
[tn−1, t], or t∗(x, t) ∈ [tn−1, t] is the time when r(θ;x, t) intersects the bound-

ary Γ otherwise. φ(2)(x, t) = (1 − e−K(x,t)∆t(O)(x, t))/K(x, t) if K(x, t) 6= 0
or ∆t(O)(x, t) otherwise. E2(F, w) is the local truncation error.
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Incorporating Eqs. (2.8)–(2.10) and the inflow boundary condition (2.2)
into Eq. (2.3), we obtain the following reference equation
∫

Ω
c(x, tn)w(x, tn)dx +

∫ tn

tn−1

∫
Γ(O)

v(x, t) · n(x)c(x, t)w(x, t)dsdt

=
∫

Ω
c(x, tn−1)w(x, t+n−1)dx +

∫
Ω

φ(1)(x, tn)F (x, tn)w(x, tn)dx

+
∫ tn

tn−1

∫
Γ(O)

φ(2)(x, t)v(x, t) · n(x)F (x, t) w(x, t) dsdt

−
∫ tn

tn−1

∫
Γ(I)

v(x, t) · n(x) g(x, t)w(x, t)dsdt + E(w),

(2.11)

where E(w) =
∫ tn

tn−1

∫
Ω c(x, t)[wt(x, t)+v(x, t)·∇w(x, t)−K(x, t)w(x, t)]dxdt

+ E1(F, w) + E2(F, w).

2.3 A Numerical Scheme

In the ELLAM scheme, the trial space Sh consists of piecewise linear (or
d-linear) functions in Ω at time tn and on Γ(O) × [tn−1, tn]. Because of
the boundary condition (2.2), no degrees of freedom should be introduced
at Γ(I) at time tn. Similarly, since the solutions are known at the time
step tn−1, no degrees of freedom should be introduced at Γ(O) at time tn−1.
However, to conserve mass, all the test functions should sum exactly to one
[5]. Therefore, the test space Sh is obtained by modifying the trial space Sh:
For a basis function associated with a node at Γ(I) at time tn, we add it to the
basis function associated with its adjacent node that is inside Ω. The basis
functions associated with the nodes at Γ(O) at time tn−1 are treated similarly.
An ELLAM scheme is formulated as follows: find c(x, t) ∈ Sh which satisfies
the boundary condition (2.2), such that ∀w(x, t) ∈ Sh∫

Ω
c(x, tn)w(x, tn)dx +

∫ tn

tn−1

∫
Γ(O)

v(x, t) · n(x)c(x, t)w(x, t)dsdt

=
∫

Ω
c(x, tn−1)w(x, t+n−1)dx +

∫
Ω

φ(1)(x, tn)F (x, tn)w(x, tn)dx

+
∫ tn

tn−1

∫
Γ(O)

φ(2)(x, t)v(x, t) · n(x)F (x, t) w(x, t) dsdt

−
∫ tn

tn−1

∫
Γ(I)

v(x, t) · n(x) g(x, t)w(x, t)dsdt.

(2.12)

By using a Lagrangian coordinate, the ELLAM scheme (2.12) significantly
reduces the temporal truncation errors and generates accurate solutions even
if very large time steps are used. Moreover, it symmetrizes the governing
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PDE (2.1), and generates a well-conditioned, symmetric and positive-definite
coefficient matrix. Thus, the discrete system can be solved efficiently by, for
example, the conjugate gradient method in an optimal order without any
preconditioning needed. Furthermore, this scheme naturally incorporates the
boundary condition (2.2) into its formulation and conserves mass. Finally,
most terms in the scheme are standard in the FEM and can be solved in a
straightforward manner. In the first term on the right-hand side, the trial
and test functions are actually defined at different time steps. Hence, its
evaluation could be very challenging and raises serious numerical difficulties.
We use a forward Euler or second-order Runge-Kutta tracking algorithm [17]
to evaluate this term.

3 Description of ENO and WENO Schemes

The ENO scheme was first introduced by Harten et al [11, 12] as an impro-
vement over traditional fixed-stencil high-order FD interpolations, which are
known to be oscillatory in nature especially near discontinuities of the soluti-
ons. These oscillations do not decay as the mesh is refined and lead to further
instabilities in the solution. By choosing the smoothest stencil among several
candidates, ENO provides a uniformly high order approximation of the fluxes
at cell boundaries while avoiding the spurious oscillations near steep fronts
and shock discontinuities that are associated with traditional FDMs. As a
further improvement, Liu et al [15] provide Weighted ENO (WENO) that is
based on using a convex combination of the candidate stencils instead of just
one. This treatment maintains the advantages of the original ENO and in
addition obtains a higher-order accuracy.

In this section we describe the ENO and WENO schemes of order k = 4
for Eq. (2.1) defined on IR2 with a uniform partition xi = i∆x and yj = j∆y.
If we assume that no reaction or source term is present and let v = (V1, V2),
Eq. (2.1) can be rewritten as

ct + fx(c) + gy(c) = 0, with f(c) = V1c, g(c) = V2c, (3.1)

We can write the spatially discretized ENO and WENO schemes as

dcij(t)
dt

= L(c) ≡ − 1
∆x

(f̂i+1/2,j − f̂i−1/2,j) − 1
∆y

(ĝi,j+1/2 − ĝi,j−1/2). (3.2)

Below we define the numerical flux f̂i+1/2,j for a fixed j, and will skip
the subscript j when it is clear from the context. The flux ĝi+1/2,j in the y-
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direction is defined by symmetry. For the fixed j, we identify the cell averages
q̄i = f(cij). Upwinding is guaranteed by computing the Roe speed given by

ai+1/2 =
f(ci+1,j) − f(cij)

ci+1,j − cij
. (3.3)

The flux f̂i+1/2,j is then given by

f̂i+1/2,j =

{
q−
i+1/2, if ai+1/2 ≥ 0,

q+
i+1/2, otherwise.

(3.4)

The ENO and WENO schemes differ in the reconstruction procedure that
provides q+

i+1/2 and q−
i+1/2. The ENO scheme starts by computing the undi-

vided differences for degrees 1 to k = 4

Q[xi−1/2, xi+1/2] = q̄i,
Q[xi−1/2, . . . , xi+j+1/2] = Q[xi+1/2, . . . , xi+j+1/2]

−Q[xi−1/2, . . . , xi+j−1/2].
(3.5)

The selection of the smoothest 5-point stencil (corresponding to k = 4) starts
with the two point stencil

S =
{
xi−1/2, xi+1/2

}
. (3.6)

If
|Q[xi−3/2, xi−1/2, xi+1/2]| < |Q[xi−1/2, xi+1/2, xi+3/2]|, (3.7)

then xi−3/2 is added to the stencil S. Otherwise, xi+3/2 is added. We repea-
tedly add points in a similar manner until we come up with a 5-point stencil.
Assume that the stencil S is composed of r cells to the left and s cells to the
right of the current cell. We introduce

q−
i+1/2 =

3∑
j=0

crj q̄i−r+j , q+
i−1/2 =

3∑
j=0

cr−1,j q̄i−r+j , (3.8)

where

crj =
k∑

m=j+1

(∑k
l=0,l 6=m Πk

p=0,p 6=m,l(r − p + 1)

Πk
l=0,l 6=m(m − l)

)
. (3.9)

The WENO reconstruction is based on a convex combination of four dif-
ferent reconstruction values

q−
i+1/2 =

3∑
r=0

ωrq
(r)
i+1/2, q+

i−1/2 =
3∑

r=0

ω̃rq
(r)
i−1/2, (3.10)
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where the reconstructed values q
(r)
i+1/2 and q

(r)
i−1/2 (r = 0, 1, 2, 3) are defined

by (3.8). The weights are given by

ωr =
αr∑3

s=0 αs

, αr =
dr

(ε + βr)
2 ,

ω̃r =
α̃r∑3

s=0 α̃s

, α̃r =
d3−r

(ε + βr)
2 , 0 ≤ r ≤ 3.

(3.11)

Here the constants are d0 = 1/35, d1 = 12/35, d2 = 18/35, d3 = 4/35, and
ε = 10−6. The smoothness indicators are

βr =
[
q̄i+3−r − 3q̄i+2−r + 3q̄i+1−r − q̄i−r)

]2

+
1
2

[
(q̄i+2−r − 2q̄i+1−r + q̄i−r)2 + (q̄i+3−r − 2q̄i+2−r + q̄i+1−r)2

]

+
1
3

[
(q̄i+1−r − q̄i−r)2 + (q̄i+2−r − q̄i+1−r)2 + (q̄i+3−r − q̄i+2−r)2

]
.

(3.12)

For n = 1, 2, . . . , N , a fully discrete ENO or WENO scheme with a fourth-
order Runge-Kutta temporal discretization is defined by

c(1) = cn−1 +
∆t

2
L(cn−1), c(2) = cn−1 +

∆t

2
L(c(1)),

c(3) = cn−1 + ∆tL(c(2)),

cn =
1
3

(
−cn−1 + c(1) + cu(2) + c(3)

)
+

∆t

6
L(c(3)).

(3.13)

4 Numerical Experiments

The spatial domain is Ω = (−0.5, 0.5)×(−0.5, 0.5), a rotating velocity field is
imposed as v(x) = v(x, y) = (−4y, 4x). The time interval is [0, T ] = [0, π/2],
which is the time period required for one complete rotation. The initial
condition c0(x) is given by

c0(x) = exp
(

−|x − xc|2
2σ2

)
, (4.1)

where xc = (xc, yc), and σ are the centered and standard deviations. The
corresponding analytical solution for Eq. (2.1) with f = 0 is

c(x, t) = exp
(

−|x̄ − xc|2
2σ2 −

∫ t

0
K(r(θ; x̄, 0), θ)dθ

)
, (4.2)

where x̄ = (x̄, ȳ) = (x cos(4t)+y sin(4t),−x sin(4t)+x cos(4t)), and r(θ; x̄, 0) =
(x̄ cos(4θ) − ȳ sin(4θ), x̄ sin(4θ) + ȳ cos(4θ)).
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This example can be viewed as an incompressible flow in a two-dimensional
homogeneous medium with a known analytical solution, and has been widely
used to test for numerical artifacts of different schemes, such as numerical
stability, numerical dispersion, spurious oscillations, deformation, and phase
errors, etc. For the performance of the ELLAM scheme for problems with
discontinuities, please see [1, 20].

Scheme h ∆t Max. Min. CPU CFL # Fig. #
anal 1/64 N/A N/A 1 0 N/A
ELLAM 1/64 π/8 0.9987 0 1m 5s 71.25 1
ENO 1/64 π/580 0.8757 0 1m 10s 0.98

1/64 π/6000 0.8756 0 12m 5s 0.09
1/96 π/860 0.9552 -0.0004 3m 45s 0.99
1/96 π/4000 0.9552 0 17m 26s 0.21
1/196 π/1700 ∞ ∞ 30m 2s 1.0
1/196 π/2400 0.9443 -0.0040 42m 7s 0.71
1/256 π/2400 0.9967 -0.0311 1h 15m 0.95
1/256 π/3000 0.9836 -0.0013 1h 34m 0.76 2
1/512 π/6000 0.9993 0 12h 52m 0.76

WENO 1/64 π/580 0.9617 0 2m 17s 0.98
1/64 π/6000 0.9617 0 23m 37s 0.09
1/96 π/860 0.9832 0 7m 34s 0.99
1/96 π/4000 0.9832 0 34m 57s 0.21
1/196 π/1700 0.9964 0 1h 1m 1.0
1/196 π/2400 0.9964 0 1h 27m 0.71
1/256 π/2400 0.9979 0 2h 31m 0.95 3
1/256 π/3000 0.9979 0 3h 9m 0.76
1/512 π/6000 0.9995 0 1day 1h 0.76

Table 1. The Performance of the ELLAM, ENO, and WENO.

In the example runs, the data are chosen as follows: K = f = 0, xc =
(−0.25, 0), σ = 0.0447. A uniform spatial grid h = ∆x = ∆y = 1

64 and a
time step of ∆t = π/8 are used in the ELLAM simulation. A second-order
Runge-Kutta method with a micro-time step of ∆tm = ∆t/20 is used to
track the characteristics. For the given h, a largest admissible (satisfying
the CFL condition) time step of ∆t = π

580 is used in the ENO and WENO
simulations. We then systematically reduce the sizes of h and ∆t to examine
the performance of ENO and WENO schemes until their solutions are roughly
compatible with the ELLAM solution. The numerical results are presented
in Table 1 with selected solutions are plotted in Figures 1–3.
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Figure 1: ELLAM, min = 0, max = 0.9987.
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Figure 2: ENO, min = −0.0013, max = 0.9836.
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Figure 3: WENO, min = 0, max = 0.9979.
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5 Summary

We present an ELLAM scheme for linear advection-reaction PDEs in mul-
tiple space dimensions and carry out numerical experiments to compare the
performance of the ELLAM scheme with ENO and WENO schemes. We have
the following observations: (i) Even though very large time steps and coarse
spatial grids are used, the ELLAM scheme still generates much more accurate
solutions than those obtained with the ENO and WENO schemes with much
finer spatial and temporal grid sizes. Hence, the ELLAM scheme outperforms
ENO and WENO schemes in the context of linear transport PDEs. (ii) The
mathematical models used to describe multiphase and/or multicomponent
fluid flow processes in porous medium are typically strongly coupled systems
of nonlinear PDEs [3, 8, 20]. Nevertheless, most of these PDEs govern the
transport of different components in these fluids and are advection-dominated
PDEs that are linear in terms of the concerned concentrations. Thus, after
some decoupling/linearization techniques are applied, these transport PDEs
are reduced to linear advection-dominated transport PDEs at each time step.
Therefore, ELLAM schemes are expected to perform very well for porous me-
dium flow problems, which has in fact been confirmed in [19]. (iii) In this
paper the ELLAM scheme is compared with the ENO/WENO schemes in
terms of linear transport PDEs. The latter were originally developed for
nonlinear hyperbolic conservation laws and have been successful in resolving
shock discontinuities and complex solution structures. The investigation on
the performance of the methods for nonlinear hyperbolic conservation laws
are beyond the scope of this paper.
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An Accurate Approximation to Compressible
Flow in Porous Media with Wells

Hong Wang Dong Liang Richard E. Ewing
Stephen L. Lyons Guan Qin

Abstract

An Eulerian-Lagrangian localized adjoint method (ELLAM) is pre-
sented for compressible flow occurring in compressible porous media
with wells. The ELLAM scheme symmetrizes the governing transport
equation, greatly eliminates non-physical oscillation and/or excessive
numerical dispersion present in many large-scale simulators widely used
in industrial applications, and conserves mass. Computational experi-
ments show that the ELLAM scheme can accurately simulate incom-
pressible and compressible fluid flows in porous media with wells, even
though coarse spatial grids and very large time steps, which are one or
two orders of magnitude larger than those used in many numerical me-
thods, are used. The ELLAM scheme can treat large mobility ratios,
discontinuous permeabilities and porosities, anisotropic dispersion in
tensor form, and wells.

KEYWORDS: characteristic method, compressible flow, Eulerian-Lagrangian
methods, porous medium flow, wells

1 A Mathematical Model

The objective of subsurface fluid flow modeling is to simulate complex fluid
flow processes occurring in subsurface porous media sufficiently well to op-
timize the recovery of hydrocarbon or to accurately predict and thoroughly
remediate the contamination in groundwater transport processes. In order to
do this, one must build mathematical models to describe the essential pheno-
mena and the fundamental laws, and design numerical methods to discretize
these models and to represent the basic features as well as possible without
introducing serious nonphysical phenomena.

Let p(x, t) and u(x, t) be the pressure and the Darcy velocity of a fluid
mixture, and c(x, t) be the concentration of an invading fluid or concerned
solute/solvent in the fluid mixture. The equation of mass conservation for
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the fluid mixture and Darcy’s law lead to the following coupled system of
partial differential equations (PDEs) that describes fluid flow processes in a
porous medium reservoir Ω with injection and production wells [2, 5, 9]

∂

∂t
(φρ) + ∇ · (ρu) = q, x ∈ Ω, t ∈ (0, T ],

u = − K
µ(c)

(∇p − ρg∇d), x ∈ Ω, t ∈ (0, T ].
(1.1)

In many cases, the thickness of the medium is significantly smaller than its
length and width. Hence, it is reasonable to average the medium properties
vertically and to assume Ω ⊂ IR2 with a nonuniform local elevation. K(x) is
the permeability tensor of the medium, µ(c) is the concentration-dependent
viscosity of the fluid mixture, which is determined by some mixing rule

µ(c) = µo[(1 − c) + M
1
4 c]−4 (1.2)

where µo is the viscosity of the resident fluid and M is the mobility ratio.
ρ is the density of the fluid mixture, g is the magnitude of gravitational
acceleration, d(x) is the reservoir depth, q(x, t) is a source and sink term that
accounts for the effect of injection and production wells, φ is the porosity of
the medium (proportion of volume available to porous medium flows).

For a fluid of constant compressibility cρ, the following equation of state

ρ = ρr exp(cρ(p − pr)) (1.3)

holds, where ρr is the reference density at the reference pressure pr. Eq. (1.3)
and its simplified versions have been widely used in modeling subsurface
contaminant transport and remediation in the hydro-science community. It
can also be applied to compressible fluid flow processes in reservoir simulation,
unless the fluids contain large quantities of dissolved gas [2, 9].

Due to the effect of large pressure changes involved in porous medium
fluid flow processes and the type of the medium of the reservoir, the porous
medium can deform. Let cφ(x) be the compressibility of the medium. The
following constitutive relation is often used to model the porosity φ [1]

φ = φr(x) exp(cφ(x)(p − pr)), (1.4)

where φr is the porosity of the medium at the reference pressure pr.
Incorporating Eqs. (1.3) and (1.4) into the system (1.1), and introducing

the mass flow rate σ = ρu as a primary variable, we obtain the following
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system of PDEs for the pressure p and the mass flow rate σ

Sp(x, p)
∂p

∂t
+ ∇ · σ = q, x ∈ Ω, t ∈ (0, T ],

σ = − ρK
µ(c)

(∇p − ρg∇d), x ∈ Ω, t ∈ (0, T ],
(1.5)

where Sp(x, p) is the storage term defined by

Sp(x, p) =
∂(φρ)

∂p
= ρφ(x, p)(cφ(x) + cρ). (1.6)

The equation of mass conservation for the concerned component can be
expressed in terms of the mass flow rate σ as

∂(φρc)
∂t

+ ∇ · (σc − D(σ, p)∇c) = c∗q, x ∈ Ω, t ∈ (0, T ], (1.7)

where c∗ is a prescribed concentration at sources or is equal to c at sinks,
D(σ, p) is the diffusion-dispersion tensor that consists of molecular diffusion
and (anisotropic velocity-dependent) mechanical dispersion

D(σ, p) = dmφρ I + dt|σ| I +
dl − dt

|σ|
(

σ2
x σxσy

σxσy σ2
y

)
, (1.8)

σ = (σx, σy), dm is the molecular diffusion coefficient, I is the identity tensor,
and dt and dl are the transverse and longitudinal dispersivities, respectively.

System (1.5) and (1.7) needs to be closed by the initial and boundary
conditions. In petroleum reservoir simulation the boundary ∂Ω is typically
impermeable, leading to no-flow boundary conditions of the form [5, 9]

σ · n = 0, (D(σ, p)∇c) · n = 0, (x, t) ∈ ∂Ω × [0, T ]. (1.9)

These conditions also arise in environmental modeling although other types
of boundary conditions are possible [2]. For simplicity, we assume boundary
conditions (1.9) and a rectangular domain Ω = (ax, bx) × (ay, by) [2, 9].

If the fluid and the medium are incompressible, ρ = constant and φ =
φ(x). The system (1.5) and (1.7) is reduced to the mathematical model for
incompressible fluid flow, which has been widely used previously [5, 4, 6].

Because diffusion or dispersion is often a small phenomenon relative to
advection, Eq. (1.7) is an advection-diffusion equation with advection being
the dominant phenomenon. Additional features of (1.5) and (1.7) include
the singularities of the solutions at wells, discontinuous permeabilities and
porosities, a large adverse mobility ratio in the flow processes that could
cause viscous fingering phenomena, anisotropic dispersion in tensor form, as
well as the enormous size of field-scale applications.
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2 An ELLAM Scheme

We use a sequential decoupling and linearization technique for system (1.5)
and (1.7), and a mixed finite element method to solve p and σ from (1.5)
[5, 6]. For simplicity, we describe only an ELLAM scheme for Eq. (1.7)
assuming that the pressure p and the mass flow rate σ in (1.7) are known.

The ELLAM was originally introduced by Celia, Russell, Herrera, and
Ewing for the solution of (one-dimensional constant-coefficient) advection-
diffusion PDEs [3, 8]. Let 0 = t0 < t1 < . . . < tn < . . . < tN−1 < tN = T

be a partition of the time interval [0, T ] with ∆tn = tn − tn−1. In the
ELLAM formulation, we multiply (1.7) by space-time test functions w that
are continuous and piecewise smooth, vanish outside the space-time strip
Ω × (tn−1, tn], and are discontinuous in time at time tn−1. This yields a
space-time weak formulation

∫
Ω

φρc(x, tn)w(x, tn)dx +
∫ tn

tn−1

∫
Ω

∇w(y, θ) · D(σ, p)∇c(y, θ)dydθ

−
∫ tn

tn−1

∫
Ω

c(y, θ)
[
φρ

∂w(y, θ)
∂θ

+ σ · ∇w(y, θ)
]

dydθ

=
∫

Ω
φρ c(x, tn−1)w(x, t+n−1)dx +

∫ tn

tn−1

∫
Ω
(c∗qw)(y, θ)dydθ.

(2.1)

Here w(x, t+n−1) = lim
t→tn−1,t>tn−1

w(x, t) to take into the fact that w(x, t) is

discontinuous in time at time tn−1.
Careful analysis of various operator splittings in the ELLAM framework

concludes that the test functions w(y, θ) in (2.1) should be chosen to satisfy
the hyperbolic part of the adjoint equation of (1.7) (e.g., see [3])

φρ
∂w

∂θ
(y, θ) + σ · ∇w(y, θ) = 0, y ∈ Ω, θ ∈ [tn−1, tn]. (2.2)

Equation (2.2) implies that the test functions w(y, θ) should be constant
along the characteristics y = r(θ;x, tn), defined by the differential equation

dr
dθ

=
σ

φρ
, θ ∈ [tn−1, tn],

r(θ;x, t)
∣∣∣
θ=t

= x.
(2.3)

In the ELLAM scheme, we choose the test functions w(x, tn) to be piecewise-
bilinear functions for x ∈ Ω at time tn and define them by constant extension
along the characteristics r(θ;x, tn) to the space-time strip Ω × (tn−1, tn].
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We enforce the Euler quadrature at time tn to evaluate the source and
sink term in Eq. (2.1). Note that for any (y, θ) ∈ Ω × [tn−1, tn], there exists
an x ∈ Ω such that y = r(θ;x, tn). We obtain

∫ tn

tn−1

∫
Ω

c∗(y, θ)q(y, θ)w(y, θ) dydθ

=
∫

Ω

∫ tn

tn−1

c∗(r(θ;x, tn), θ)q(r(θ;x, tn), θ)w(x, tn)
∣∣∣∣ ∂(r, θ)
∂(x, tn)

∣∣∣∣ dθdy

= ∆tn

∫
Ω

c∗(x, tn)q(x, tn)w(x, tn)dx + Eq(c∗, w),

(2.4)

where
∣∣∣ ∂(r,θ)
∂(x,tn)

∣∣∣ = 1+O(tn−θ) is the Jacobian of the transformation, Eq(c∗, w)
is the local truncation error.

We can evaluate the diffusion-dispersion term similarly and obtain

∫ tn

tn−1

∫
Ω

∇w(y, θ) · D(σ, p)∇c(y, θ) dydθ

= ∆tn

∫
Ω

∇w(x, tn) · D(σ, p)(x, tn)∇c(x, tn)dx + ED(c, w),
(2.5)

where ED(c, w) is the local truncation error term.
Using Eq. (2.2), we see that the last term on the left-hand side of Eq. (2.1)

vanishes along the characteristics r(θ;x, tn) defined by Eq. (2.3). However,
for a general mass flow rate field σ(x, t), porosity φ(x, p) and density ρ(p),
one cannot analytically solve the problem (2.3) to track r(θ;x, tn) exactly.
Hence, numerical means have to be used to approximate the characteristics.
For linear transport PDEs where the fluid velocity is assumed to be a known
smooth function, we were able to utilize an Euler or a Runge-Kutta quadra-
ture to track the characteristics and to obtain accurate numerical solutions
[11]. For the coupled system (1.5) and (1.7), a semi-analytical tracking algo-
rithm should be used [7]. When a numerical method is used to approximate
the characteristics r(θ;x, tn), the last term on the left-hand side of Eq. (2.1)
does not vanish. Nevertheless, it has been proven that dropping this term
does not affect the optimal order convergence rate of the ELLAM scheme
[10].

In the ELLAM scheme, we substitute (2.4) and (2.5) into Eq. (2.1) and
drop Eq(c∗, w), ED(c, w), and the last term on the left-hand side of Eq. (2.1).
We define the trial functions c(x, tn) to be piecewise bilinear functions on Ω
at time step tn as in the standard finite element method. Note that the trial
functions coincide with the test functions on Ω at time level tn. But the
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trial functions c are defined at time step tn only while the test functions w

are defined on the space-time strip Ω× (tn−1, tn] by constant extension along
characteristics from Ω at time tn. This leads to the following ELLAM scheme

∫
Ω

φ(x, p(x, tn))ρ(p(x, tn))c(x, tn)w(x, tn)dx

+∆tn

∫
Ω

∇w(x, tn) · D(σ(x, tn), p(x, tn))∇c(x, tn)dx

=
∫

Ω
φ(x, p(x, tn−1))ρ(p(x, tn−1))c(x, tn−1)w(x, t+n−1)dx

+∆tn

∫
Ω

c∗(x, tn)q(x, tn)w(x, tn)dx.

(2.6)

By using a characteristic tracking, the ELLAM scheme (2.6) significantly
reduces the temporal truncation errors and generates accurate numerical so-
lutions even if very large time steps are used. Moreover, the ELLAM scheme
conserves mass [3], which is of essential importance in applications. Further-
more, the ELLAM scheme symmetrizes the transport PDE (1.7) and gene-
rates a 9-banded, symmetric and positive definite coefficient matrix. Finally,
except for the first term on the right-hand side, all other terms in (2.6) are
standard in the finite element method and can be computed in a straightfor-
ward manner. In this term, the trial and test functions are actually defined
at different time steps. Hence, the evaluation of this term is very challenging
and raises various numerical difficulties . We refer interested readers to [11]
for detailed implementational issues.

3 Numerical Experiments

In this section we apply the ELLAM scheme (2.6) to solve the system (1.5)
and (1.7). The test problems are standard five spot pattern displacements
in reservoir simulation. Example 1 is the simulation of an incompressible
fluid flow in a rigid homogeneous medium, while Example 2 is the simulation
of a compressible fluid flow in a compressible, heterogeneous medium. The
(common) data in these experiments is as follows: The spatial domain Ω =
(0, 1000) × (0, 1000) ft2, the viscosity of oil µo = 1.0 cp, the mobility ratio
M = 41. The injection well is located at the upper-right corner (1000, 1000)
with an injection rate of q = 30 ft2/day and c∗ = 1.0. The production well
is located at the bottom-left corner (0, 0) with a production rate of q = 30
ft2/day. A spatial grid of ∆x = ∆y = 50 ft, and a time step of ∆t = 360
days (one year) are used. Previously, the time steps used in these simulations



330 Wang, Liang, Ewing, Lyons, and Qin

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

0.1

0.1

0.3

0.3

0.5
0.5

0.7

0.9

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

0.1

0.1

0.3

0.3

0.5

0.5

0.7

0.7

0.9

(a) Contour plot at t = 5 years. (b) Contour plot at t = 10 years.

Figure 1: The concentration plots of invading component in Example 1.

range from a few days for the upwind finite difference method (UFDM) to
one month for the modified method of characteristics (MMOC) [5, 6].

Example 1: Incompressible flow in a rigid homogeneous medium.
In this example run, we choose the remaining data as follows: The porosity
φ = 0.1, the permeability coefficients (diagonal entries) are kx = ky = 80 md,
the molecular diffusion is Dm = φdm = 0, the longitudinal and transverse
dispersions are Dl = φdl = 4.0 ft and Dt = φdt = 0.4 ft, respectively. The
initial concentration is c0(x, y) = 0. The contour plots for the concentration
of the invading fluid at 5 and 10 years are presented in Fig. 1(a) and 1(b).

Example 2: Compressible flow in a compressible, heterogeneous
medium. In this example run, the compressibility of the medium cφ =
0.000001, the reference density ρr = 0.8 g/cm3 = 49.942 lb/ft3, the com-
pressibility of the fluid cρ = 0.0001, the reference pressure pr = 1 atm. =
14.696 psia, the initial pressure p0(x, y) = 3000 psia, and the initial concen-
tration c0(x, y) = 0.0. The subdomain Ω(1) = (150, 600) × (150, 600) ft2.
The remaining parameters on this subdomain are as follows: The reference
porosity φr = 0.09, the permeability coefficients kx = ky = 35 md, the mole-
cular diffusion coefficient Dm = 0.0 ft2/day, the longitudinal and transverse
dispersions are Dl = 3.6 ft and Dt = 0.36 ft, respectively. On the subdomain
Ω(2) = Ω−Ω(1), the reference porosity φr = 0.1, the permeability coefficients
kx = ky = 80 md, the molecular diffusion coefficient Dm = 0.0 ft2/day, the
longitudinal and transverse dispersions are Dl = 4 ft and Dt = 0.4 ft, res-
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(a) Contour plot at t = 5 years. (b) Contour plot at t = 10 years.

Figure 2: The concentration plots of invading component in Example 2.

pectively. The contour plots for the concentration of the invading fluid at 5
and 10 years are presented in Fig. 2(a) and 2(b).

These results show that the ELLAM scheme can accurately simulate in-
compressible and compressible fluid flows in porous media with wells, even
though coarse spatial grids and very large time steps, which are one or two
orders of magnitude larger than those used in many numerical methods, are
used, implying a significantly improved efficiency and accuracy. The ELLAM
scheme can treat large mobility ratios, discontinuous permeabilities and poro-
sities, anisotropic dispersion in tensor form, and wells. The ELLAM scheme
conserves mass.
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Fast Convergent Algorithms for Solving 2D
Integral Equations of the First Kind

Yan-Fei Wang Ting-Yan Xiao

Abstract

Based on Tikhonov’s regularization method, this paper applies two
fast convergent algorithms developed by the authors to solving 2D
integral equations of the first kind. The procedures of discretization
and regularization are discussed. The numerical tests are presented to
show high efficiency and numerical stability. The integral equations
of the first kind can be seen in determination of capillary pressure
functions.

KEYWORDS: regularization method, fast convergent algorithm, 2D integral
equation of the first kind

1 Introduction

In many application areas, such as determination of capillary pressure func-
tions in porous media, signal reconstruction, image restoration, and operator
identification [1, 2, 5, 3], we encounter integral equaitons of the first kind. As
a genaral framework of dealing with inverse problems, equations of this kind
are inherently ill-posed and solving them is time consuming. Thus some kind
of regularization methods must be employed. So far, many efforts have been
put to the 1D case [14, 9, 4, 10, 8, 13, 16], while few successful results have
been obtained for the 2D case. The main difficulty lies in the huge amount
of computation time in the iterative process of choosing an appropriate re-
gularization parameter. This results in need for the study of fast convergent
algorithms.

Let us consider the general 2D integral equation of the first kind

Az =
∫ b1

a1

∫ d1

c1

K(x, y; ξ, η)z(ξ, η)dξdη = u(x, y), (x, y) ∈ [a2, b2] × [c2, d2].

(1.1)

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 333–344, 2000.
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The kernal K(·, ·) is continuous and A : W 1
2 [a1, b1; c1, d1] → L2[a2, b2; c2, d2]

is a bounded linear and compact operator. As known, when the range of A,
i.e., R(A), is not closed, (1.1) is ill-posed.

Generally speaking, the right-side member u and the operator A of (1.1)
are roughly known. Suppose that the approximate version of the input data
(A, u) is (Ah, uδ), with the error

‖Ah − A‖ ≤ h, ‖u − uδ‖ ≤ δ, h, δ ≥ 0. (1.2)

Due to the ill-posedness of this problem, we cannot take zη given by

zη = (Ah)+uδ, η = (h, δ) (1.3)

as the stable approximation to the exact solution of the problem (1.1):

zT = A+u, (1.4)

where A+ and A+
h denote the generalized inverses of the related operators.

To get a stable approximation of the generalized solution of A+uδ (or A+
h uδ),

we employ Tikhonov’s regularization method, which consists of the steps
1. Constructing the regularized operator R(u, α);
2. Selecting the regularization parameter α = α(δ) (or α = α(δ, h))

matching the error η = (δ, h) of the input data.
The regularized solution R(uδ, α) can be obtained by minimizing the

smoothing functional

Mα[z, uδ] = ‖Az − uδ‖2 + αΩ[z], α > 0, (1.5)

or
Mα[z, uδ] = ‖Ahz − uδ‖2 + αΩ[z], α > 0. (1.6)

Obviously, the minimizer zα
δ or zα

η must satisfy the Euler equation

(A∗A + αΩ′)z = A∗uδ, (1.7)

or
(Ah

∗Ah + αΩ′)z = Ah
∗uδ. (1.8)

As a posterior strategy, the regularization parameter should satisfy the so-
called discrepancy equation [13, 12]

φ(α) = ‖Azα
δ − uδ‖2 − δ2 = 0, (1.9)
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or the generalized discrepancy equation [15]

φ(α) = ‖Ahzα
η − uδ‖2 − (δ + h‖zα

η ‖)2 = 0 (1.10)

Here A∗
h (or A∗) is the Hilbert-adjoint operator of Ah (or A), Ω[·] denotes

the identity operator or the positively defined, linearly differentiable operator,
and Ω′[·] denotes the Frechet derivative.

Denote the root of (1.9) or (1.10) as α = α(δ) or α = α(η). Then the
regularized solution R(uδ, α(δ)) or R(uδ, α(η)) is the stable approximation
to the exact solution zT .

The paper is organized as follows. §2 discusses the discretization and
regularization of (1.1). §3 presents two fast convergent algorithms for solving
(1.9) or (1.10) and gives the related convergence theorem of the algorithms.
The numerical tests are presented in §4 to compare the efficiency of the new
algorithms with Newton’s method.

2 Discretization and Regularization

We use a finite-difference method to discretize (1.1). Let the step sizes in the
direction of ξ, η, x, and y be h1, h2, h3, and h4, respectively. The difference
scheme of (1.1) is

Azh1h2 = uh3h4 , (2.1)

where

h1 =
b1 − a1

K
, h2 =

d1 − c1

J
, h3 =

b2 − a2

L
, h4 =

d2 − c2

M
,

K, J , L, and M are given positive integers, and

uh3h4 ∈ Lh3h4 = {uh3h4 |uh3h4 = (u11, u21, . . . , uL1, u12, . . . , uLM )T },

ulm = u(xl, xm), l = 1, 2, . . . , L, m = 1, 2, . . . , M,

zh1h2 ∈ Wh1h2 = {zh1h2 |zh1h2 = (z11, z21, . . . , zK1, z12, . . . , zKJ)T },

zkj = z(ξk, ηj), k = 1, 2, . . . , K; j = 1, 2, . . . , J,

A = (Alm)L×M , Alm = (Alm
kj )K×J ,

Alm
kj =

∫ ξk+1

ξk

∫ ηj+1

ηj
K(xl, ym; ξ, η)dξdη.
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Define the norms ‖ · ‖h1h2
W and ‖ · ‖h3h4

L by

‖zh1h2‖2
W h1h2 = (zh1h2 , zh1h2)W h1h2 ,

(zh1h2 , rh1h2)W h1h2 =
K∑

k=1

J∑
j=1

h1h2zkj r̄kj +
K∑

k=1

J∑
j=1

h1h24zkj4r̄kj ,

4zkj = zk+1,j−zkj

h1
+ zk,j+1−zkj

h2
,

k = 1, 2, . . . , K, j = 1, 2, . . . , J, zkj , rkj ∈ Wh1h2 ,

‖uh3h4‖2
Lh3h4 = (uh3h4 , uh3h4)Lh3h4 ,

(uh3h4 , vh3h4)Lh3h4 =
L∑

l=1

M∑
m=1

h3h4ulmv̄lm, uh3h4 , vh3h4 ∈ Lh3h4 ,

where r̄kj and v̄lm are the conjugates of rkj and vlm, respectively.
We can show that ‖zh1h2‖2

W 1
2

is the difference expression of ‖z(ξ, η)‖2
W 1

2

given by

‖z(ξ, η)‖2
W 1

2
=
∫ d1

a1

∫ d1

c1

(|z(ξ, η)|2 + |∂z

∂ξ
+

∂z

∂η
|2)dξdη.

Then the discrete regularized solution of (1.1) can be obtained by minimizing
the discreted Tikhonov functional

Mα[zh1h2 ] = ‖Azh1h2 − uh3h4‖2
Lh3h4 + α‖zh1h2‖2

W h1h2 . (2.2)

The following theorem is classical.

Theorem 2.1 For any uh3h4 ∈ Lh3h4 and any positive number α, there
exists a unique element zh1h2

α ∈ Wh1h2 such that

Mα[zh1h2
α ] = inf Mα[zh1h2 ], (2.3)

and zh1h2
α satisfy the Euler equation

(A∗A + αB)zh1h2 = A∗uh3h4 , (2.4)

where A∗ is the adjoint matrix of A and B is in the form

B =
h3h4

h2




C −H
−H C −H

−H C −H
. . . . . . . . .

−H C −H
−H C




L×M

,
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C =
h3h4

h1




2(h2
1+h2

2
h2
1h2

2
+ 2 −1

h2
1

−1
h2
1

2(h2
1+h2

2)
h2
1h2

2
+ 2 −1

h2
1

. . . . . . . . .
−1
h2
1

2(h2
1+h2

2)
h2
1h2

2
+ 2 −1

h2
1

−1
h2
1

2(h2
1+h2

2)
h2
1h2

2
+ 2




K×J

,

H =




1
h2
2

1
h2
2

. . .
1
h2
2

1
h2
2




K×J

.

For the proof, the first part is mainly based on the completeness of the
space Wh1h2 , while the remaining part is a common business of variational
calculas.

We can see that B is a 5-diagonal matrix and is of the diagonal dominance,
so B is non-singular. Thus (17) can be rewritten as

(B−1A∗A + αI)zh1h2 = B−1A∗uh3h4 . (2.5)

It is more convenient to solve (2.5). By the way, (2.4) or (2.5) is a regulariza-
tion of (2.1). Considering the huge amount of computation, solving it along
with the discrepancy equation (1.9) or (1.10) is not easy. This urges us to
find efficient methods to solve this problem.

3 Fast Convergent Algorithms

Without loss of generality, we only consider the method for solving equation
(1.9). To do this, we first quote some results for the existence of the root and
the convergence of the corresponding regularization solution zα

δ . We define

β(α; uδ) = ‖Azα
δ − uδ‖, (3.1)

the discrepancy or discrepancy function of the approximate solution zα
δ [7],

where zα
δ is the solution of (1.7).

The following theorems are useful in our further considerations.

Theorem 3.1 Assume that u ∈ R(A) (the range of A) and the signal-to-
noise ratio of the input data uδ is ‖uδ‖/δ > 1, i.e.,

‖u − uδ‖ ≤ δ < ‖uδ‖. (3.2)
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Then the function α → β(α; uδ) is continuous and non-decreasing, and δ

belongs to the range of the function.

From the above theorem, there exists a unique α∗ = α∗(δ) satisfying the
discrepancy equation

β(α∗(δ); uδ) = δ, (3.3)

or
φ(α∗(δ)) = 0. (3.4)

Theorem 3.2 Under the same conditions of Theorem 3.1, if the regulariza-
tion parameter α = α(δ) is determined by (3.3) or (3.4), then we have

lim
δ→0

z
α(δ)
δ = zT . (3.5)

The proof of the above theorems is analogous to that of the theorems in
[7]. In addition, by differentiating the two sides of (1.7) with regard to α

directly, we can easily obtain the following theorem.

Theorem 3.3 For any regularization parameter α > 0, the solution zα
δ of

(1.7), along with the function φ(α), is infinitely differentiable with respect to
α and we have

(A∗A + αΩ′)(zα
δ )′ = −Ω′zα

δ , (3.6)

(A∗A + αΩ′)(zα
δ )(k) = −kΩ′(zα

δ )(k−1), k = 2, 3, . . . . (3.7)

In principle, there are two ways to improve the efficiency and decrease
the amount of computation in dealing with the discrepancy equation (1.9).

1. Try one’s best to improve the convergence rate while solving the equa-
tion (1.9) by iterative methods. By making full use of the good property of
the function φ(α) (it is infinitely differentiable about α) and the higher-order
Taylor’s expansion, we may construct algorithms which possess a higher-order
convergence rate.

2. Associated with the above tactics, we should decrease the total amount
of computation for evaluating the functions φ(α), φ′(α), and φ′′(α). This can
be accomplished by Cholesky’s decomposition, along with three times of the
back substitution.

Let us state the iterative formulas of two algorithms.
Given, by truncating the Taylor expantion of φ(α) after the (α − αn)3

term at α = αn, we obtain the two iterative formulas.
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Iterative formula 1:

αn+1 = αn − 2φ(αn)

φ′(αn) + sign(φ′(αn))
√

φ′(αn)2 − 2φ(αn)φ′′(αn)
. (3.8)

Iterative formula 2:

αn+1 = αn − φ(αn)
φ′(αn)

− φ′′(αn)
2φ′(αn)

(
φ(αn)
φ′(αn)

)2. (3.9)

Below we see that the iterative formula (3.8) or (3.9) possesses the pro-
perty of a third-order convergence rate. It should be pointed out that φ(αn),
φ′(αn), and φ′′(αn) can be computed as follows:

φ′(α) = −2α(
dzα

dα
, zα), (3.10)

φ′′(α) = −2(
dzα

dα
, zα) − 2α[(

dzα

dα
,
dzα

dα
) + (zα,

d2zα

dα2 )], (3.11)

where zα, dzα/dα, and d2zα/dα2 can be obtained by solving a series of equa-
tions

(A∗A + αkΩ′)zαk
= A∗uδ, (3.12)

(A∗A + αkΩ′)z′
αk

= −Ω′zαk
, (3.13)

(A∗A + αkΩ′)z′′
αk

= −2Ω′z′
αk

. (3.14)

From (3.12)–(3.14) we can see that their differences only lie in the right-
hand side. This hints that, in one cycle of the iterations, by using Cholesky’s
decomposition only once with three times of back substitutions, the vectors
zαk

, z′
αk

, and z′′
αk

are obtained. In this way, the computation time is greatly
saved.

Assume that the operator equation of the first kind (1.1) has been discre-
tized and regularized. Then the iterative scheme can be given as follows.
Algorithm 1.

step 1: input α0, δ, ε, A, and u, and set k = 0;
step 2: Give a decomposition: AT A + αkΩ′ = LkLk

T ;
step 3: Solve the equation: Lky = AT uδ, Lk

T zαk

δ = y;
step 4: Compute φ(αk), if |φ(αk)| < ε; then go to step 10;
step 5: Solve the equation: Lky = −zαk

δ , Lk
T (zαk

δ )′ = y;
step 6: Compute φ′(αk), set dk = φ(αk)

φ′(αk) , and do the Newton step iteration

αk := αk − dk; (3.15)
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step 7: Solve the equation: Lky = −2(zαk

δ )′, Lk
T (zαk

δ )′′ = y;
step 8: Compute φ′′(αk) and set ρk = φ′(αk)2 − 2φ(αk)φ′′(αk); if ρk < 0,

then go to step 9; else, proceed with the another iteration

αk := αk − 2φ(αk)

φ′(αk) + sgn(φ′(αk))ρ
1
2
k

; (3.16)

step 9: Set k:=k + 1 and go to step 2;
step 10: Set α∗ = αk and zα∗

δ = zαk

δ ; stop.
Algorithm 2.

steps 1–7, 9, and 10 are the same as in Algorithm 1; step 8 is changed as
step 8:

αk := αk − d2
k

φ′′(αk)
2φ′(αk)

. (3.17)

For the above two algorithms, we have the following convergence theorem.

Theorem 3.4 Assume that φ(α) has a root at α = α∗: φ(α∗) = 0. Then
∃ε > 0 such that, ∀α0 ∈ U(α∗, ε), the sequence {αk}∞

k=1 generated by Algo-
rithms 1 and 2 converges at a third-order rate to α∗.

For the proof of the theorem, see [16].
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Figure 1: Convergent rate comparison and exact solution.

Notice that after the decomposition is obtained, the amount of computing
the kth order derivative φ(k)(α) is O(n). Thus, in solving equation Cx = b

and computing φ(α), φ′(α), φ′′(α), their total amount of computation is
about n3/6. Thus, by employing our new algorithms, the convergence rate is
greatly improved and the CPU time is also greatly saved. Moreover, if we let
N denote the iterative steps of Newton’s method and M denote the iterative
steps of the new algorithms, then as the order number n is sufficiently large,
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the ratio of the amounts of computation (so is the CPU time) is near to
N/M .

For (1.10), our algorithms are also applicable. It needs only some modi-
fications of the expression φ′(α) and φ′′(α).

4 Numerical Experiments and Conclusions

To compare the efficiency, we implement numerical experiments. Let us de-
note the Newton method as Newton and let new1 and new2 represent Algo-
rithm 1 and Algorithm 2 based on (3.8) and (3.9), respectively. The numerical
experiments are done with MATLAB on an IBM-PC machine.

Consider the integral equation (see [15])

Az =
∫ 1

0

∫ 1

0
exp{−80[(x − s − 0.5)2 + (y − t − 0.5)2]}z(s, t)dadt = g(x, y),

(4.1)
where the kernal is K(x, y; s, t) = exp{−80[(x − s − 0.5)2 + (y − t − 0.5)2]},
the interval is [0, 1] × [0, 1], and x, y ∈ (0, 2). The exact solution is

z̄(s, t) =


e− (s−0.3)2

0.03 + e− s−0.7)2

0.03

0.955040800
− 0.052130913


 e− (t−0.3)2

0.03 .

We use the compound trapezoid formula to discretize (4.1). Suppose that
D = {(s, t)|0 ≤ s ≤ 1, 0 ≤ t ≤ 1} and the related points are equally spaced
points:

si = ih1, h1 = 1/K, i = 0, 1, . . . , K, tj = jh2, h2 = 1/J, j = 0, 1, . . . , J.

Then a series of small rectangle are

Dij = {(s, t)|si ≤ si+1, tj ≤ tj+1},

where i = 0, 1, . . . , K and j = 0, 1, · · · , J .
Applying the trapezoid integral formula on each sub-rectangle, then the

compound trapezoid formula of 2D is found

L∑
l=0

M∑
m=0

AKJz(sl, tm) = g(xl, ym), (4.2)

where

AKJ =
1

4KJ

K∑
i=0

J∑
j=0

pijK(xl, ym; si, tj),
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Figure 2. Computed solutions.

and pij , i = 0, 1, 2, . . . , K, j = 0, 1, 2, . . . , J , are the elements of matrix P :
P = (pij)(K+1)×(J+1), with

P =




1 2 2 . . . 2 2 1
2 4 4 . . . 4 4 2
2 4 4 . . . 4 4 2
...

...
... . . .

...
...

...
2 4 4 . . . 4 4 2
2 4 4 . . . 4 4 2
1 2 2 . . . 2 2 1




.

So the discrete matrix is

(AKJ)L×Mzh1h2 = gh3h4 . (4.3)

Due to the ill-posedness of (4.1), (AKJ)L×M is ill-conditioned. Thus we
should employ a regularization method to get its stable numerical solution.
In addition, to compare the stability of the above three algorithms, we give
a strong perturbation to the right-hand member of (4.3):

gh3h4
δk

= gh3h4
k + gh3h4

k δsin(ωtk),

where ω = 500. Let δ = 5.9161e − 6 and α0 = 0.001. The results are shown
in Figs. 1 and 2 and Table 1.

The left figure in Fig. 1 is the convergent rate comparison of three al-
gorithms and illustrates that new1 and new2 converge to the regularized
solution more rapidly than Newton. Meanwhile new1 is the fastest one. Un-
der the case that K = J = L = M = 35, the concrete computed results of
the three algorithms are shown in Table 1.
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The numerical test also indicates that the three algorithms all converge
well. They are not sensitive to the perturbation of the right-hand member.
This can be seen from the right figure in Fig. 1 (the exact solution of the
integral equation with disturbing right-hand members of new1 method) and
the left figure in Fig. 2 (the computed solution of the integral equation with
disturbing right-hand members of new1 method). The right figure in Fig. 2
(the computed solution of the integral equation with disturbing right-hand
members without using the regularization method) illustrates that without
using the regularization method, the computed solution cannot be accepted.

Algorithms iterative steps time consuming α∗ relative error
Newton 13 1.04 1.2502e-6 2.6440e-7
new1 4 0.38 1.2502e-6 2.6438e-7
new2 10 0.99 1.2502e-6 2.6438e-7

Table 1. Comparison of three algorithms at K = J = L = M = 35.

In summary, the new algorithms for solving 2D integral equations of the
first kind in this paper are stable and effective and new1 may be used as a
good solver. In the future, we will consider the 3-D case and the nonlinear
case.
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A Two-Grid Finite Difference Method
for Nonlinear Parabolic Equations

Ziting Wang Xianggui Li

Abstract

A two-level finite difference scheme is given for the approximation
of nonlinear parabolic equations. The analysis of the scheme is given
by assuming an implicit time discretization. In this two-level scheme
the full nonlinear problem is solved on a coarse grid of size H. The
nonlinear term is expanded about the coarse grid solution and an ap-
proximate interpolation operator is used to provide values of the coarse
grid solution on the fine grid in terms of superconvergent node points.
The nonlinear equations analyzed arise in the flow and transport pro-
cesses of fluids in porous media and the analysis carried out applies to
the numerical simulation of these processes.

KEYWORDS: finite difference, two-grid method, nonlinear parabolic equa-
tion, error estimate, superconvergence

1 Introduction

We consider a finite difference scheme for the nonlinear parabolic differential
equation

∂p
∂t − ∇ · (K(x, p)∇p) = f(t, x) in (0, T ] × Ω,

p(0, x) = p0(x) in Ω,

−(K(p)∇p) · ν = g on (0, T ] × Γ,

(1.1)

where Ω is a rectangular domain in Rd (d = 1, 2 or 3) with boundary Γ, ν

is the outward unit normal vector on Γ, and K : Ω × R → Rd×d is a sym-
metric, positive definite second-order diagonal tensor, i.e., K = diag(kll), l =
1, . . . , d.

To avoid time-step constrains, it is often preferable to solve (1.1) implicitly
in time. However, for fine meshes, the resulting large systems of nonlinear
equations can be expensive to solve. To decrease the amount of work ne-
cessary to solve (1.1), we consider a two-level method where the nonlinear
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problem is solved only on a coarse grid of diameter H and a linear problem
is solved on a fine grid of diameter h � H. On the fine grid, we approximate
K(p) by a first-order Taylor expansion about the solution from the coarse
grid. Thus, instead of solving a large nonlinear problem on the fine grid,
we solve a small nonlinear problem on the coarse grid and a large linearized
problem on the fine grid.

2 A Coarse Grid Nonlinear Finite Difference

Let Hs(Ω), for a positive integer s, be the Sobolev space W s
2 (Ω). Denote the

inner product in Hs by

(f, g)s =
∑

|α|≤s

∫
Ω

Dαf · DαgdΩ,

where f , g ∈ Hs(Ω). We denote by Cp,1(Ω) the space of functions whose pth
spatial derivative is Lipschitz continuous.

Let V = H(Ω, div) = {v ∈ (L2(Ω)d : ∇ · v ∈ L2(Ω)} and W = L2(Ω). We
denote the subspaces of V containing functions with normal traces weakly
equal to 0 and gn as V 0 and V n, respectively.

We consider two quasi-uniform triangulations of Ω, a coarse triangulation
with mesh size H denoted by τH and a refinement of this triangulation with
mesh size h denoted by τh. We consider the lowest-order RTN space on
rectangles. Thus, on an element E ∈ τk, k = h or H, we have

Vk(E) = {(α1x1 + β1, α2x2 + β2, α3x3 + β3)T : αi, βi ∈ R},
Wk(E) = {α : α ∈ R}.

Define v0
k = V 0⋂Vk and V n

k = V n
⋂

Vk. We use the standard nodal basis,
where for Vk the nodes are at the midpoints of edges or faces of the elements,
and for Wk the nodes are the centers of the elements. We define discrete
products corresponding to the application of the midpoint (M), trapezoidal
(T), and midpoint by trapezoidal (TM) quadrature rules, and denote the
associated norms by ‖ · ‖r and the error in approximating an integral by
the given rule by ET (q, r) = (q, r) − (q, r)T . The error in approximating an
integral by either the trapezoidal or the trapezoidal by midpoint rule is

|EQ(q, v)| ≤ C
∑

E∈τh

∑
|α|=2

‖ ∂α

∂xα
(q, v)‖L1(E)h

2.
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For any φ ∈ L2(Ω), let φ̂k denote the L2 projection of φ onto Wk; i.e.,

(φ, w) = (φ̂k, w) ∀w ∈ Wk.

This L2 projection operator has the approximation property for φ ∈ Hj(Ω)

‖φ̂ − φ‖ ≤ C‖φ‖jk
j , 0 ≤ j ≤ 1, k = h or H.

Associated with the RTN mixed finite element spaces is the projection
operator Π : (H1(Ω))d → Vk, defined by

(∇ · (Πq), w) = (∇ · q, w) ∀w ∈ Wk,

with the approximation properties

‖q − Πq‖ ≤ C‖q‖1k, ‖∇ · (q − Πq)‖ ≤ C‖∇ · q‖1k.

Furthermore, by the definition of Πq and the midpoint rule of integration,
we have that the error in the first component of the projection evaluated at
the center of a grid block side is given by

|(Πq)x − qx|(xi+1/2,yj) ≤ Ch2‖qx‖W ∞
2 (Ω).

Using this estimate, we can bound the L∞ norm of the projection by

‖Πq − q‖L∞(Ω) ≤ Ch‖q‖W ∞
2 (Ω).

In the expanded mixed formulation of (1.1), we define the variable ũ =
−∇p and u = K(p)ũ. The analysis uses the estimate

‖Πun − un‖TM + ‖Πũn − ũn‖TM ≤ Ck2‖ũ‖2.

For the lowest-order RTN spaces on rectangles, for any q = (qx, qy) ∈
H1(Ω) and E ∈ τk,

‖ ∂

∂x
(Πq)x‖L2(E) ≤ ‖∂qx

∂x
‖L2(E), ‖ ∂

∂y
(Πq)y‖L2(E) ≤ ‖∂qy

∂y
‖L2(E).

We uses the auxiliary variables, ũn and un, defined by

ũn ≡ −∇pn, un ≡ K(pn)ũn.

The problem is to find (pn, ũn, un) ∈ (W × V × V ) satisfying

(pn
t , w) + (∇ · un, w) = (fn, w) ∀w ∈ W,

(ũn, v) = (pn,∇ · v) ∀v ∈ V 0
H ,

(un, v) = (K(pn)ũn, v) ∀v ∈ V.

(2.1)
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We choose cell-centered finite difference approximations Pn
H ∈ WH , Ũn

H ∈ VH ,
and Un

H ∈ V n
H to the functions p(tn, ·), ũ(tn, ·), and u(tn, ·), respectively, for

each n = 1, . . . , N , satisfying

(dtP
n
H , w) + (∇ · Un

H , w) = (fn, w) ∀w ∈ WH ,

(Ũn
H , v)TM = (Pn

H ,∇ · v) ∀v ∈ V 0
H ,

(Un
H , v)TM = (K(PH(Pn

H))Ũn
H , v)T ∀v ∈ VH .

(2.2)

and we take P 0
H = p̂H(t0, ·). We define PH(p) from the values of pij for

i = 1, . . . , N̂x and j = 1, . . . , N̂y by the bilinear interpolation operator. If p

is twice differentiable in space, for Ph(p) we have

‖PH(p) − p‖∞ ≤ CH2.

Theorem 2.1 Assume fn ∈ L2(Ω) for each n and K is continuously dif-
ferentiable in its arguments. Then, for ∆t sufficiently small, there exists a
unique solution to problem (2.2).

We make the smoothness assumptions
(H1) f ∈ W 1

∞(0, T ; L2(Ω));
(H2) Kll(x, p) ∈ C1(Ω × R)

⋂
W 2

∞(Ω × R), l = 1, . . . , d, and Kll and
∂Kll

∂p are uniformly Lipschitz continuous in p;
(H3) There exist positive constants K∗ and K∗ such that, for z ∈ Rd,

K∗‖z‖2 ≤ ztK(x, p)z ≤ K∗‖z‖2, x ∈ Ω, p ∈ R;

(H4) p ∈ W 2
∞(0, T ; C3,1(Ω));

(H5) u, ũ ∈ W 2
∞(0, T ; C1(Ω))d

⋂
W 2

∞(0, T ; W 2
∞(Ω))d.

Theorem 2.2 For each n = 1, . . . , N , let (pn
H

, Ũ
n

H , Un
H) ∈ (WH × VH × V n

H)
satisfy

(∇ · Un
H , w) = (bn, w) ∀w ∈ WH ,

(Ũ , v)TM = (Pn
H ,∇ · v) ∀v ∈ V 0

H ,

(Un
H , v)TM = (K(PH(pn))Ũ

n

H , v)T ∀v ∈ VH ,

with bn = fn − pn
t and P 0

H = P̂ 0
H . Then, under assumptions (H1)-(H5),

‖Un
H − un‖TM + ‖Ũ

n

H − un‖TM + ‖Pn
H − pn‖M ≤ CH2,

‖dtP
n
H − dtp

n‖M ≤ C(H2 + ∆t).
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We have the theorem about the convergence of the above difference scheme

Theorem 2.3 Let Pn
H , Ũn

H , and Un
H , n = 1, . . . , N be defined by equation

(2.1) with the initial value P 0
H = p̃H(t0, ·). Assume that (H1)-(H5) hold.

Then there exists a positive constant C, independent of H and ∆t, such that

‖PN
H − PN‖M + {∆t

N∑
n=1

K∗‖Ũn
H − ũ‖2

T }1/2 ≤ C(H2 + ∆t).

3 Fine Grid Linear Scheme

We now consider a linear cell-centered finite difference scheme on the fine
grid where we make use of the nonlinear solution on the coarse grid. We
solve the problem for Pn

h ∈ Wh, Ũn
h ∈ Vh, Un

h ∈ V n
H , n = 1, . . . , N ,

(dtP
n
h , w) = −(∇ · Un

h , w) + (fn, w) ∀w ∈ Wh,

(Ũn
h , v)TM = (Pn

h ,∇ · v),

(Un
h , v)TM = (K(PH(Pn

H))Ũn
h , v)T ,

+(Kp(PH(Pn
H))QH(Ũn

H)(PH(Pn
h ) − PH(Pn

H)), v)T ∀v ∈ Vh.

We define QH(ũ) as a vector quantity with entries Qx
H(ũx) and Qy

H(ũy).
The entry Qx

H(ũx) is defined from the values of ũx
i+1/2,j for i = 0, . . . , N̂x and

j = 1, . . . , N̂y as follows. For points (x, y) such that xi−1/2 ≤ x ≤ xi+1/2,
i ∈ {1, . . . , N̂x} and yj ≤ y ≤ yj+1, j ∈ {1, . . . , N̂y}, we take Qx

H(ũx) to be
the bilinear interpolate of ũx

i−1/2,j , ũx
i+1/2,j , ũx

i−1/2,j+1, and ũx
i+1/2,j+1. This

leaves a strip half a cell in height along the top and bottom of the domain.
We consider the bottom strip. For i = 0, . . . N̂x, set

Qx
H(ũx)(xi+1/2, y1/2) = (2Hy

1 + Hy
2 )ũx

i+1/2,1 − Hy
1 ũx

i+1/2,2/(Hy
1 + Hy

2 ).

For other points, an analogous interpolation definition is defined. We
have the theorem about the convergence of the above linear finite difference
scheme.

Theorem 3.1 Let Pn
h , Ũn

h , and Un
h , n = 1, . . . , N , be defined by equation

(2.2) with the initial value P 0
h = p̂h(t0, ·). Assume that (H1)-(H5) hold and

that H and ∆tH−d/2 are sufficiently small. Then there exists a positive
constant C, independent of h, H, and ∆t such that

‖PN
h − pN‖M +

{
∆t

N∑
n=1

K∗‖Ũn
h − ũn‖2

T

}1/2

≤ C(H4−d/2 + h2 + ∆t).
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4 Conclusions

We have presented and derived error estimates for a two-level finite difference
scheme for nonlinear parabolic equations and have shown and optimal-order
convergence in both H1 and L2 for the coarse and fine grids. We remark that
we have only considered the case of the Neumann boundary condition and a
diagonal tensor K.

The estimates derived in this paper use the inverse estimate to bound the
L∞-norm in terms of the L2-norm. As a result, our estimates may not be as
sharp as possible. However, no better L∞ estimates exist at this time for the
expanded mixed finite element method.

The two-level scheme described above could be extended by adding levels
and expanding about the next coarse solution in the nonlinear term at each
new level. This corresponds to adding more Newton-like iterations with each
iteration taking place on the next finer grid. This possibility is under investi-
gation. We are currently implementing these two-level methods for equations
of interest to flow in porous media.
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A Compact Operator Method
for the Omega Equation

Francisco R. Villatoro Jesús Garćıa-Lafuente

Abstract

The ageostrophic vertical velocity field for the mesoscale dynamics
of the Alboran Sea is determined by means of synoptic data and nu-
merical solution of the omega equation. For the stationary, horizontal
geostrophic velocity field, a fourth-order, compact operator differentia-
tion is used. The vertical ageostrophic flow is determined by means
of a numerical solution of the omega equation with a Q vector formu-
lation, solved by means of a fourth-order accurate, compact operator
method. The numerical results confirm that on a macroscale, upward
motion occurs upstream of the anticyclonic rotation while downward
motion mesoscale takes place downstream.

KEYWORDS: oceanography, ageostrophic flow, omega equation, compact
operator method

1 Introduction

The geographical location of the Alboran Sea between the South of Spain and
the North of Africa, receiving water from the Atlantic Ocean (AO) through
the Strait of Gibraltar, makes its study of fundamental importance for the
research of the superficial circulation on the Western basin of the Mediterra-
nean Sea. An expedition made in July 1993 shows the picture: the Atlantic
jet from the AO proceeds as a wave to the East generating two anticiclonic
gyres where the water from the AO accumulates near the African coast, the
so called West (WE) and East (EE) gyres, which are separated by Cape Tres
Focas and the Alboran Island [1]. The WE, which has also been found by
other expeditions, is known to be permanent but there is some controversy
related to the EE, which may be seasonal.

The data for the temperature and salinity distribution found in the Al-
boran Sea are synoptic, showing the general situation, but incapable to track
the temporal evolution, and staggered, so these data have been filtered and
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interpolated on a regular grid as shown in [1], to study the stationary state of
the fluid. From the experimental data the pressure/density ratio ∆φ [m2/s2]
and the Brunt-Väisäla frequency N [s−1] are obtained every 5 meters from
2 to 202 m, in a regular grid of 10 × 10 km. In this paper these data have
been used to obtain the stationary, horizontal geostrohpic velocity field in the
Alboran Sea by means of a compact operator differentiation of fourth-order
accuracy.

The estimation of the vertical velocity yields information on the exchanges
of heat and salt near the surface of the ocean and is responsible for the vertical
transport and distribution of nutrients and plackton [4]. As direct measures
of vertical velocities are difficult, the solution of the omega equation can
be used. In this paper the quasigeostrophic omega equation [2, 3], valid in
regions of low dynamics and Rossby numbers, is solved by means of a fourth-
order accurate, compact operator method [6]. It is standard to close this
numerical method using homogeneous Dirichlet boundary conditions [8, 7].

When the horizontal velocities are smaller in one direction than in the
other, the three-dimensional omega equation can be simplified to a two-
dimensional omega equation for the stream function. A compact operator
method has also been developed for this equation. Dirichlet boundary condi-
tions have been used except for upstream and downstream, for which Roache,
the null second-order derivative of the stream function, and Neumann, res-
pectively, boundary conditions are used due to their better accuracy [5].

In §2 , the equations relevant to the problem studied in this paper are
presented. §3 is devoted to the presentation of the numerical, fourth-order,
compact operator methods developed in this paper. §4 shows the main results
obtained in this paper. Finally, the last section is devoted to the presentation
of conclusions.

2 Presentation of the Problem

When the Coriolis forces approximately balance with pressure gradients,
the flow field U = (U, V,W ) can be separated in a geostrophic and quasi-
geostrophic flow as

U = Ug + ua, V = Vg + va, W = w ≡ wa,

where |W | � |U |, |V |, |ua| � |Ug|, and |va| � |Vg|.
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The geostrophic field can be calculated from the dynamic height using
the expressions [3]:

Ug = − 1
f

∂∆φ
∂y

, Vg =
1
f

∂∆φ
∂x

, (2.1)

where f = 2 Ω sinψ is the local frequency of rotation of the Earth at latitude
ψ ≈ 36o at the center of Alboran Sea and f = 8.55 × 10−5 [s−1].

The steady-state omega equations for the quasi-geostrophic flow are as
follows [2, 3]:

∂(N2 w)
∂x

−f2 ∂ua
∂z

= Qx,
∂(N2 w)
∂y

−f2 ∂va
∂z

= Qy,
∂ua
∂x

+
∂va
∂y

+
∂w

∂z
= 0,

(2.2)
where the potential vorticity Q is obtained from the geostrophic flow as

Qx = 2 f
(
∂Vg
∂x

∂Ug
∂z

+
∂Vg
∂y

∂Vg
∂z

)
, Qy = −2 f

(
∂Ug
∂x

∂Ug
∂z

+
∂Ug
∂y

∂Vg
∂z

)
.

A simple omega equation for the vertical velocity flow can be easily obtained
using the continuity equation in (2.2), yielding

f2 ∂
2w

∂z2 +
(
∂2

∂x2 +
∂2

∂y2

)
(N2 w) =

∂Qx

∂x
+
∂Qy

∂y
≡ F. (2.3)

The boundary conditions for this equation are difficult to determine since
the synoptic experimental data have been interpolated in a regular grid.
The bottom and top of the grid are fictitious boundaries at 202 and 2 m.,
respectively, of depth. The south and north boundaries correspond to water
and coast points. The west and east boundaries correspond to water incoming
from the Atlantic ocean and water going out from the Alboran Sea. Since the
detailed boundary conditions are very difficult to obtain, Dirichlet boundary
conditions have been used for all the boundaries of the computational grid
since Viudez et al. [8] have shown they are enough accurate for this problem.

Eq. (2.3) can be further simplified if the variation of the horizontal velocity
in the x-direction is smaller than that in the y-direction:

∣∣∣∣∂ua∂x
∣∣∣∣�

∣∣∣∣∂va∂y
∣∣∣∣ .

By introducing the stream function

va = −∂ψ

∂z
, w =

∂ψ

∂y
,
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we have the simplified omega equation

∂

∂y

(
N2 ∂ψ

∂y

)
+ f2 ∂

2ψ

∂z2 = Qy. (2.4)

Similarly, when ∣∣∣∣∂va∂y
∣∣∣∣�

∣∣∣∣∂ua∂x
∣∣∣∣ ,

another stream function can be introduced

ua = −∂ψ′

∂z
, w =

∂ψ′

∂y
,

yielding the simplified omega equation

∂

∂x

(
N2 ∂ψ

′

∂x

)
+ f2 ∂

2ψ′

∂z2 = Qx. (2.5)

For the boundary conditions for the stream function equation, homogeneous
Dirichlet ones have been used for the north, south, bottom, and top bound-
aries, Neumann ones for the east, as considered as outflow, and Roache ones
for the west inflow. When solving the stream function equation, Roache bo-
undary conditions, i.e., the null second-order derivative, are more accurate
than Neumann ones [5].

3 Fourth-Order Compact Operator Method

The calculation of the geostrophic field using eq. (2.1) requires the use of a
differentiation formula. In this paper a compact operator method of fourth-
order accuracy is used. This implicit method uses the difference expression

U̇i ≡ dUi
dx

=
1

2 ∆x
∇ + ∆

1 + δ2/6
Ui, i = 0, 1, . . . , N, (3.1)

where the finite difference operators are defined as

E Ui = Ui+1, ∇ = E − 1, ∆ = 1 − E−1, δ2 = ∇ − ∆.

Eq. (3.1) yields the linear, tridiagonal system of equations

U̇i−1 + 4 U̇i + U̇i+1 =
3

∆x
(Ui+1 − Ui−1),

whose truncation error expansion is

U̇i =
dUi
dx

− ∆x4

180
d5Ui
dx5 + O

(
∆x6) , (3.2)
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showing its fourth-order accuracy. For the boundary conditions, asymmetri-
cal formulas are used

5U̇0 + 16U̇1 − 3U̇2 = − 1
3∆x

(44U0 − 26U1 − 27U2 + 10U3 − U4) ,

5U̇N + 16U̇N−1 − 3U̇N−2 =
1

3 ∆x
(44UN − 26UN−1 − 27UN−2

+10UN−3 − UN−4) ,

(3.3)

for the left and right, respectively, boundaries. These expressions have been
selected since they yield exactly the same truncation error terms, up to the
fifth-order included, as the inner formula, i.e., eq. (3.2). The solution of the
corresponding tridiagonal systems is obtained by using the Thomas method.

The second-order derivatives appearing in the elliptic equations (2.3)–
(2.5) are also approximated using a compact operator method, e.g.,

Üi ≡ d2Ui
dx2 =

1
∆x2

δ2

1 + δ2/12
Ui, (3.4)

which yields the tridiagonal system of linear equations

Üi−1 + 10 Üi + Üi+1 =
12

∆x2 (Ui+1 − 2Ui + Ui−1) ,

whose truncation error term is

Üi =
d2Ui
dx2 − ∆x4

240
d6Ui
dx6 + O

(
∆x6) . (3.5)

When the compact operator approximation (3.4) is used for the inner points
in the grid, different boundary conditions can be used. In this paper Dirich-
let homogeneous boundary conditions are used for eq. (2.3) and Dirichlet,
Neumann, and Roache homogeneous boundary conditions for both eqs. (2.4)
and (2.5). For the Dirichlet boundary conditions, U0 = UN = 0, for the
Neumann ones, eqs. (3.3) are used and for the Roache boundary conditions,
the stencil is used at the left boundary:

16Ü0 + 151Ü1 − 83Ü2

=
1

∆x2

(
771
4
U0 − 2019

4
U1 +

885
2
U2 − 285

2
U3 +

51
4
U4 − 3

4
U5

)
,

and the same expression with UN−i replacing Ui for the right one. This
expression has truncation error terms equal to eq. (3.5) up to the fifth-order
(included). The substitution of eq. (3.4) into eq. (2.3) yields

f2(12 + δ2x)(12 + δ2y)
δ2z

∆z2wijk + (12 + δ2z)(12 + δ2y)
δ2x

∆x2

(
N2
ijkwijk

)

+(12 + δ2z)(12 + δ2x)
δ2y

∆y2

(
N2
ijkwijk

)
= (12 + δ2z)(12 + δ2x)(12 + δ2y)Fijk,
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where wijk ≈ w(i∆x, j∆y, k∆z) and homogeneous Dirichlet boundary con-
ditions are used. For the calculation of the horizontal ageostrophic flow,
eqs. (2.2), an explicit, fourth-order, Runge-Kutta method is used with homo-
geneous Dirichlet boundary conditions, e.g., ua(0) = 0 and va(0) = 0.

Eq. (3.4) can be easily substituted into eq. (2.5) or into eq. (2.4), separa-
ting this equation as

∂ψ

∂y
= φ,

∂

∂y

(
N2 φ

)
+ f2 ∂

2ψ

∂z2 = Qy,

and yielding

∇y + ∆y

2∆y
ψjk = (6 + δ2y)φjk,

(12 + δ2z)
∇y + ∆y

2∆y
φjk + f2(6 + δ2y)

δ2z
∆z2ψjk = (12 + δ2z)(6 + δ2y)Q

y
jk,

where φjk ≈ φ(j∆y, k∆z), a Neumann boundary condition is used in the
left (inflow) boundary, a Roache one in the right (outflow), and Dirichlet
ones in the other four ones. The va and w components of the ageostrophic
velocity are calculated by differentiation of the stream function ψ by means
of the compact operator eq. (3.1); the remaining component ua is obtained
solving the first equation of (2.2), with ua(0) = 0, by means of an explicit,
fourth-order, Runge-Kutta method.

The algebraic equations to be solved when the compact operator method
is applied to eq. (2.3) have 15 non-null diagonals and 9 non-null ones for
eqs. (2.4) or (2.5) and are well-conditioned. These linear systems have been
solved by means of the stabilized bi-conjugate gradient method using incom-
plete LU factorization as a preconditioner. The mean of required iterations
is approximately 10 for a residual error treshold of 10−10.

4 Presentation of Results

Fig. 1 shows the geostrophic flow field resulting from the experimental data
available. These figures show the west gyre, which continue being visible for
all depths, and the smaller east gyre, which apparently disappear as depth is
increased. A zoom of the bottom right plot shows that the east gyre remains
despite with very small velocities. The code has been verified checking that
the conservation law for the momentum approximately conserves.

Fig. 2 shows the ageostrophic flow field calculated using the simplified
omega equation (2.5), based on the stream function formulation. Similar re-
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sults have been obtained for the omega equation (2.4). Although the conser-
vation of momentum approximately also holds for the ageostrophic velocity
field (ua, va, w), the results are not expected by physical principles applied
to this problem; i.e., upward motion must occur upstream of the anticyclonic
gyres while downward motion must take place downstream. The reason for
this behaviour is that the hypothesis required to derive eq. (2.5) or eq (2.4)
does not hold since the numerical results yield∣∣∣∣∂ua∂x

∣∣∣∣ ≈
∣∣∣∣∂va∂y

∣∣∣∣ .
However, the results are encouraging since the velocities we have obtained
have the correct orders of magnitude

|w| � |va| ≈ |ua| � |Ug| ≈ |Vg|,

required for the validity of the complete omega equation (2.3).
Fig. 3 shows the vertical velocity field for the solution of the complete

omega equation (2.3). The conservation law also approximately holds for
this numerical method assuring the improved accuracy of the fourth-order,
compact operator method over a standard second-order one. The resulting
velocity field has similar orders of magnitude than the one obtained with the
simplified omega equation, e.g.,

|w| ≈ 10−7m/s, |va| ≈ |ua| ≈ 10−2m/s, |Ug| ≈ |Vg| ≈ 1m/s.

Fig. 3 shows the vertical velocity contours for a yz-plane at x-positions
corresponding to the two sides of both the West (top plots) and East (bottom
plots) gyres. This figure and other figures not shown here show that upward
and downward motion occur at the south and north directions, respectively,
near the west side of the West gyre and the reverse, i.e., downward and
upward motion at the south and north directions, in the east side of this gyre.
Similar behaviour, but less remarked, is found in the East gyre. These results
are not sufficiently confident so as to confirm the East gyre as a stationary
phenomena but confirm that the numerical method yield physically realistic
results.

5 Conclusions

A fourth-order, compact operator method has been developed for the calcu-
lation of the geostrophic velocity field and the solution of both the simplified
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100 200 300

50

100

150

200

y
 :
 S

o
u

th
−

N
o

rt
h

x : West−East

z=2m.   (Ug, Vg)

1 m/s

100 200 300

50

100

150

200

y
 :
 S

o
u

th
−

N
o

rt
h

x : West−East

z=62m.   (Ug, Vg)

1 m/s

100 200 300

50

100

150

200

y
 :
 S

o
u

th
−

N
o

rt
h

x : West−East

z=122m.   (Ug, Vg)

0.6 m/s

100 200 300

50

100

150

200

y
 :
 S

o
u

th
−

N
o

rt
h

x : West−East

z=182m.   (Ug, Vg)

0.2 m/s

Figure 1: Geostrophic flow field for depths 2, 62, 122, and 182 meters from top
left to bottom right.
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Figure 2: Vertical velocity flow both (va, w) (left) and stream function isocontours
(bottom)) for a y-plane (South-North direction) trough the center of the West gyre
in the Alboran Sea.
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Figure 3: Isocontours of the vertical velocity flow at yz-planes at the west (left
plots) and east (right plots) of both the West (top plots) and East (bottom plots)
gyres found in Fig. 1.

omega equation for the stream function and the three-dimensional complete
omega equation. The resulting methods are highly accurate and allow an easy
treatment of Dirichlet, Neumann, and Roache boundary conditions. The sy-
stem of linear algebraic equations to be solved is well-conditioned and has
been solved by means of the stabilized bi-conjugate gradient method using
the incomplete LU factorization as a preconditioner.

The numerical method developed in this paper has been applied to a set
of experimental data which have been previously interpolated and smoothed
in a regular grid. The geostrophic velocity field presents clearly both the
West and East gyres as expected from previous studies. The ageostrophic
vertical velocity field does not satisfy the hypothesis required for the use of
the simplified omega equation based on the stream function. However, the
results obtained in that case have the correct order of magnitude for the
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ageostrophic velocities.

The solution of the three-dimensional omega equation for the calcula-
tion of the vertical ageostrophic flow field confirms the presence of the West
gyre, since upward motion occur upstream of this anticyclonic gyre while
downward motion takes place downstream, but is not confident enough for
the East one. The only reason we can point out is that the interpolation
and smoothing procedures used to obtain a regular grid from the staggered
original experimental data are not correct when the velocities are small.

Our results indicate that further experimental data are required to model
accurately the vertical flow for the East gyre appearing in the geostrophic
flow field. Also new techniques for the interpolation and smoothing of the
experimental data must be developed. Finally, new numerical methods based
on compact operator methods using staggered grids instead of regular ones
must also be developed.
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[4] Pinot, J. M., Tintoré, J., and Wang, D. P., A study of the omega equation
for diagnosing vertical motions at ocean fronts, J. Mar. Res. 54 (1996),
239–259.

[5] Ramos, J. I., Upstream and downstream boundary conditions in compu-
tational fluid mechanics, in Proceedings of the Fourth IMACS Interna-
tional Symposium on Computer Methods for Partial Differential Equati-
ons, edited by R. Vichnevetsky and R.S. Stepleman, Lehigh University,
Pennsylvania, USA, 1981.

[6] Smith, G. D., Numerical Solution of Partial Differential equations, 3rd
ed., Clarendon Press, Oxford, 1985.
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Domain Decomposition Algprithm for a New
Characteristic Mixed Finite Element Method

for Compressible Miscible Displacement

Danping Yang

Abstract

A Schwarz type domain decomposition algorithm is formulated to
solve an approximation for miscible displacement of compressible fluids
in porous media and convergence rate of the algorithm is analyzed.
First, a splitting positive definite mixed element procedure is used to
treat the pressure equation of parabolic type. The coefficient matrix of
the mixed element system is symmetric positive definite and the flux
equation is separated from the pressure equation so that the approxi-
mate solution of the flux function can be independently obtained, and
a characteristic finite element method is used to treat the convection-
diffusion equations of the concentrations. Then a Schwarz type domain
decomposition algorithm is introduced to solve the symmetric positive
definite systems step by step. How many iterative cycles are needed at
each time level? A convergence analysis is given.

KEYWORDS: compressible flow, miscible displacement, domain decomposi-
tion, characteristics, mixed element, convergence analysis

1 Introduction

The displacement of multi-phase multi-component compressible flow in porous
media is governed by a nonlinear system consisting of a parabolic equation of
pressure of the mixture and convection-diffusion equations of concentrations
of fluids. To illustrate the method, we consider as our model the single phase
and two component displacement of one compressible fluid by another in a
porous medium. Let Ω be a convex bounded domain in R2 with a boundary
Γ. Under the assumptions that no volume change results from the mixing of
the components and that a pressure-density relation exists for each compo-
nent in a form that is independent of the mixing and that the components
are of slight compressibility, Douglas and Roberts proposed a mathematical
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model [10] (with x ∈ Ω, 0 < t ≤ T )

(a) d(c)pt + ∇ · u = q, u = −a(c)(∇p+ γ(c)∇H),
(b) φct + u · ∇c− ∇ · (D(u)∇c) + b(c)pt = (c̃− c)q,

(1.1)

where c = c1 = 1 − c2 denotes the (volumetric) concentration of the first
component of the fluid mixture, q the volumetric rate of external flow, c̃
the concentration of the first component in the external flow, which must be
specified at injection points (q > 0) and be assumed to equal c at production
points (q < 0), and z1 and z2 the constant compressibility factors for the
i-th component, i = 1, 2. κ = κ(x) and φ = φ(x) are the permeability
and the porosity of the rock, respectively. µ = µ(c) is the viscosity of the
fluid, γ = γ(c) is the gravitational coefficient and H is the depth function
of oil reservoir. p is the pressure of fluid and u is Darcy’s velocity. D(u) =
φ[dmI + |u|(dlE(u) + dtE⊥(u))] denotes the diffusion matrix describing the
effects of molecular diffusion and dispersion where E(u) = (uiuj/|u|2)2×2 is
the 2×2 matrix representing orthogonal projection along the velocity vector,
E⊥(u) = I − E(u) is its orthogonal complement, and dm, dl, and dt are the
molecular diffusion and dispersion coefficients, respectively.

a(c) =
κ

µ(c)
, d(c) = φ

2∑
i=1

zici, b(c) = φ(z1 − z2)c(1 − c).

We also assume that no flow occurs across the boundary:

u · ν = 0, (D(u)∇c) · ν = 0 on Γ, 0 ≤ t ≤ T, (1.2)

where ν is the unit vector outer normal to Γ. In addition, the initial conditions

p = p0, c = c0 in Ω, t = 0, (1.3)

must be given.
Many works on approximations for the displacement of multiphase multi-

component flows have been done; for instance, see Douglas [8, 9, 11], Douglas,
Ewing and Wheeler [12, 13], Duran [14], Yuan [22], and Yang [20] for time-
discretization procedures of miscible displacement of incompressible fluids
in porous media by a modified method of characteristics combining with the
classical mixed finite element methods, and see Douglas and Roberts [10] and
Chou and Li [6] for numerical methods for a model for compressible miscible
displacement in porous media.
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In [21], we formulated a new approximation based on a modified method
of characteristics combining with a splitting positive definite mixed element
procedure. We use a splitting positive definite mixed element to treat the
pressure equation of parabolic type. The coefficient matrix of the mixed
element system is symmetric and positive definite and the flux equation is
separated from the pressure equation so that we can independently obtain
the approximate solution of the flux function and then, if required, obtain
the approximation of the pressure almost explicitly. We use the characteri-
stic finite element method to treat the convection-diffusion equations of the
concentrations.

The purpose of this article is to formulate a Schwarz type domain de-
composition algorithm to solve the approximation described in [21] and to
analyze the convergent rate of the algorithm. It is clear that if iterative cycles
are indefinitely implemented at each time level, we can obtain the solution of
the fully discrete systems. But indefinite cycles are impossible and unneces-
sary. How many cycles are needed at each time level? We give a convergence
analysis.

The article is organized as follows. In §2, we summarize the numerical
method for the compressible displacement problem (1.1) based on a modified
method of characteristics combining with a splitting positive definite mixed
element procedure. In §3, we formulated a Schwarz type domain decomposi-
tion algorithm to solve the fully discrete scheme defined in §2. In §4 we give
the error estimate of the approximate solution.

2 A Characteristic Mixed Element Procedure

It is easily seen that the equation (1.1(b)) is convection-dominated and direc-
tly depends on Darcy’s velocity u. A better numerical result can be obtained
by using mixed element methods to approximate directly u and characteri-
stic methods to treat the convection term. We assume that the coefficients
a(c) and d(c) in system (1.1) are below bounded positively as in [10]. In-
troduce the space H = {w ∈ (L2(Ω))2; ∇ · w ∈ L2(Ω), w · ν = 0 on Γ},
S = H1(Ω), and M = L2(Ω). Let α(c) = 1/a(c) and β(c) = 1/d(c). The
system (1.1) is equivalent to the following characteristic mixed weak form
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that seeks (c,u, p) ∈ S × H × M such that

(a) (ψcσ, z) + (D(u)∇c,∇z) + (b(c)β(c)(q − ∇ · u), z)
= ((c̃− c)q, z), ∀ z ∈ S,

(b) ((α(c)u)t,w) + (β(c)∇ · u,∇ · w)
= (β(c)q,∇ · w) − (γ(c)t∇H,w), ∀ w ∈ H,

(c) (pt, v) = (β(c)(q − ∇ · u), v), ∀ v ∈ M,

(2.1)

where ψ =
√
φ2 + |u|2 and

cσ =
φ

ψ
ct +

u
ψ

· ∇c (2.2)

denotes the direction derivative along the characteristic line of the convection
term φct + u · ∇c.

Make a time partition 0 = t0 < . . . < tn < . . . < tN = T . Set τn =
tn − tn−1. Take τ = max1≤n≤N τn as a time step size. Let Thc

, Thu
, and Thp

be three families of quasi-regular finite element partitions of the domain Ω,
and hc, hu and hp be the mesh parameters, which generally denote the largest
of diameters of elements in the partitions, respectively. Let Hhu ⊂ H be each
of the classical mixed elements defined on the partition Thu

, such as BDDM
[2], BDFM [3], BDM [4], CD [5], and RT elements in [18]. Let Shc

⊂ S and
Mhp

⊂ M be usual finite element spaces defined on the partitions Thc
and

Thp . Based on (2.1), we define a characteristic mixed element scheme.

Characteristic mixed element scheme. Given an initial approxima-
tion (c0h,u

0
h, p

0
h) ∈ Shc

× Hhu
× Mhp

such that

(a) (c0h, Z) = (c0, Z) ∀ Z ∈ Shc
,

(b) (α(c0)u0
h,W) = −(∇p0 + γ(c0)∇H,W) ∀ W ∈ Hhu

,

(c) (p0
h, V ) = (p0, V ) ∀ V ∈ Mhp

,

(2.3)

seek cnh ∈ Shc
such that

(φcnh, Z) + τn(D(un−1
h )∇cnh,∇Z) + τn(qn

+c
n
h, Z)

= (φc̄n−1
h , Z) + τn(b(cn−1

h )β(cn−1
h )(∇ · un−1

h − qn), Z)
+τn(qn

+c̃
n, Z) ∀ Z ∈ Shc ,

(2.4)

where qn
+ = max(0, qn) and c̄n−1

h is given by

c̄n−1
h = cn−1

h (x̄), x̄ = x− τnun−1
h (x)/φ(x) ∀ x ∈ Ω; (2.5)
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seek un
h ∈ Hhu such that

(α(cnh)un
h,W) + τn(β(cnh)∇ · un

h,∇ · W)

= (α(cn−1
h )un−1

h ,W) + τn(β(cnh)qn,∇ · W)

−((γ(cnh) − γ(cn−1
h ))∇H,W) ∀ W ∈ Hhu

;

(2.6)

seek pn
h ∈ Mhp such that

(pn
h, V ) = (pn−1

h , V ) + τn(β(cnh)(qn − ∇ · un
h), V ) ∀ V ∈ Mhp , (2.7)

for n = 1, 2, . . . , N .
Because point x̄ may lie outside domain Ω , we must continuously ex-

tend the value of function to the exterior of Ω. Define the operator Q as
a projection from the exterior domain Ωc = R2\Ω̄ to boundary Γ and the
point F(x) as the symmetric point of point x ∈ Ωc corresponding to the
projection point Q(x). We say a domain Ω to satisfy the property A, if
there exists a constant δ > 0 such that for each point x ∈ Ωc

⋂
Ωδ, where

Ωδ = {x; infy∈Ω |x−y| ≤ δ}, the projection point Q(x) is uniquely determined
and F(x) ∈ Ω. In this case, we can define an extension by

ϕ(x) =

{
ϕ(x), x ∈ Ω,
ϕ(F(x)), x ∈ Ωδ\Ω.

(2.8)

(2.8) defines the linear bounded extending operator from H1(Ω) to H1(Ωδ).
A domain satisfies the property A, if its boundary Γ is smooth. In the
case of convex polygon, the domain Ω satisfies also the property A. After
the function cn−1

h is extended through use of above-mentioned method (2.8),
c̄n−1
h is defined for sufficiently small τn.

It is easily seen that the coefficient matrix of the mixed element system in
schemes (2.6) and (2.7) are symmetric positive definite and the flux equations
(2.6) on the flux variable un

h is separated from the pressure equation (2.7)
on the pressure function pn

h. The matching relation (i.e., the BBL-condition)
between the mixed element space Mhp

and Hhu
required by the classical

mixed element spaces in [2, 3, 4, 5, 18] now is not necessary. The flux function
un

h can be solved independently and then, if required, the pressure function
pn

h can be obtained almost explicitly.
From the viewpoint of calculation, one can choose usual continuous finite

element spaces as Hhu
. But usual continuous finite element spaces, in general,

cannot yield an approximate solution with optimal accuracy in L2-norm. To
get the optimal approximation, we still choose the classical mixed elements as
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Hhu . The usual continuous finite element spaces may be used as the pressure
function finite element spaces Mhp

. It is clear that the number of unknowns
in systems (2.6) and (2.7) is less than the number of the unknowns in the
classical mixed element systems. Since systems (2.6) and (2.7) are symmetric
positive definite systems, many fast effective algorithms can be used.

We assume that the finite element spaces Shc
, Hhu

and Mhp
have appro-

ximate properties that there exist integers k1 ≥ k ≥ 0, r ≥ 0 and s ≥ 1 such
that, for any 1 ≤ q ≤ ∞

(a) inf
W∈Hhu

‖w − W‖(Lq(Ω))2 ≤ Khk+1
u ‖w‖(W k+1,q(Ω))2

∀ w ∈ H⋂(W k+1,q(Ω))2,
inf

W∈Hhu

‖∇ · (w − W)‖Lq(Ω) ≤ Khk1
u ‖w‖(W k1+1,q(Ω))2

∀ w ∈ H⋂(W k1+1,q(Ω))2,
(b) inf

Z∈Shc

‖z − Z‖Lq(Ω) ≤ Khs+1
c ‖z‖W s+1,q(Ω) ∀ z ∈ S⋂W s+1,q(Ω),

(c) inf
V ∈Mhp

‖v − V ‖Lq(Ω) ≤ Khr+1
p ‖v‖W r+1,q(Ω) ∀ v ∈ M⋂

W r+1,q(Ω),

(2.9)
where k1 = k + 1 in the cases that Hhu is each of BDFM and RT mixed
elements and k1 = k in the cases that Hhu

is each of BDDM and BDM
mixed elements. Both cases are included in the CD mixed elements. In [21],
we proved the convergence result.

Theorem 2.1 Suppose that the finite element space Hhu
is each of the clas-

sical mixed elements described in [2, 3, 4, 5, 18] and that the coefficients in
system (1.1) have the first and second order continuous derivatives and the
solution of system (1.1) is smooth. If the mesh parameters hc, hu, and τ

satisfy the relations

(a) K∗hs+2
c ≤ h2

u, hu = o(hc) (k = 0), hu = O(hc) (k ≥ 1),
(b) τ = o(hc), τ = o(hu),

(2.10)

then the a priori error estimates

(a) max
1≤n≤N

‖cn − cnh‖L2(Ω) + max
1≤n≤N

‖un − un
h‖(L2(Ω))2

≤ K{hs+1
c + hk+1

u + τ},
(b) max

1≤n≤N
‖pn − pn

h‖L2(Ω) ≤ K{hr+1
p + hs+1

c + hk1
u + τ}

(2.11)

hold, where the constant K only depends upon some norms of the solution of
system (1.1) and time T .

In the next section, we formulate a Schwarz alternating domain decom-
position algorithm to solve the systems (2.4) and (2.6).
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3 Domain Decomposition Algorithm

In this section, we focus on the study of the multiplicative Schwarz iterative
algorithm for solving the systems (2.4) and (2.6). For sake of convenience,
we assume that Thc = Thu = Th and k = s. We assume that a set of
overlapping sub-domains {Ωi}Q

i=1 are given, whose boundaries are aligned
with the mesh of partitions Th, Ω =

⋃Q
i=1 Ωi. Let Th,i be the restriction of

Th in Ωi, and Hh(Ωi) and Sh(Ωi) defined on Th,i be the restriction of Hh and
Sh in Ωi, respectively. Define Hh,0(Ωi) = {W ∈ Hh(Ω);W = 0 in Ω\Ωi}
and Sh,0(Ωi) = {Z ∈ Sh;Z = 0 in Ω\Ωi}. We assume that the domain
decomposition satisfies the basic condition

Condition A. For each x ∈ Ω̄, there exists an open domain Dx and
j ∈ {1, 2, . . . , Q} such that x ∈ Dx and Dx

⋂
Ω ⊂ Ωj .

We can define a Schwarz alternating iterative scheme to solve the system
(2.4) and (2.6) step by step.

Alternating Iterative Scheme. Given an initial approximation (C0,U0)
∈ Shc × Hhu such that

(a) (C0, Z) = (c0, Z) ∀ Z ∈ Shc ,

(b) (α(c0)U0,W) = −(∇p0 + γ(c0)∇H,W) ∀ W ∈ Hhu ,
(3.1)

for n = 1, 2, . . . , N , seek (Cn,Un) ∈ Shc
× Hhu

by the following iterative
method. Seek Cn ∈ Shc

in the three steps: (1) Let Cn
0 = Cn−1; (2) Find

Cn
jQ+i ∈ Sh, for i = 1, 2, . . . Q, such that

(φCn
jQ+i, Z) + τn(D(Un−1)∇Cn

jQ+i,∇Z) + τn(qn
+C

n
jQ+i, Z)

= (φC̄n−1, Z) + τn(b(Cn−1)β(Cn−1)(∇ · Un−1 − qn), Z)
+τn(qn

+c̃
n, Z) ∀ Z ∈ Sh,0(Ωi),

(3.2)

Cn
jQ+i = Cn

jQ+i−1 in Ω\Ωi, (3.3)

where C̄n−1 is given by

C̄n−1 = Cn−1(x̄), x̄ = x− τnUn−1(x)/φ(x), ∀ x ∈ Ω, (3.4)

for j = 0, 1, . . . ,m− 1; (3) Let Cn = Cn
mQ.

Seek Un ∈ Hhu
in the three steps: (1) Let Un

0 = Un−1; (2) Find Un
jQ+i ∈

Hh, for i = 1, 2, . . . Q, such that

(α(Cn)Un
jQ+i,W) + τn(β(Cn)∇ · Un

jQ+i,∇ · W)
= (α(Cn−1)Un−1,W) + τn(β(Cn)qn,∇ · W)

−((γ(Cn) − γ(Cn−1)∇H,W), ∀ W ∈ Hhu,0(Ωi),
(3.5)
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Un
jQ+i = Un

jQ+i−1 in Ω\Ωi, (3.6)

for j = 0, 1, . . . ,m − 1; (3) Let Un = Un
mQ, where m denotes the iterative

times at every time step.
According to the general theory of the Schwarz alternating algorithm

(see [15, 16, 17]), the iterative sequence {(Cn
mQ,U

n
mQ)}∞

m=1 converges to the
solution (cnh,u

n
h) at each time step as iterative times m tends to infinity and

under the condition A. But an infinite iteration is impossible. We want to
know the convergent rate of the iterative sequence {(Cn

mQ,U
n
mQ)}∞

m=1 so that
we can stop the iteration at the certain accuracy. On the other hand, we hope
that the iterative sequence {(Cn

mQ,U
n
mQ)}∞

m=1 converges as fast as possible
so that we can implement very small iterative cycles to obtain very good
approximate solutions.

In next section, we state the convergence theorem.

4 Convergence Analysis

In this section, we analyze how the convergent rate of the iterative sequence
{(Cn

mQ,U
n
mQ)}∞

m=1 depends upon the mesh parameters h and τ under some
stronger conditions than the condition A, which are practical and reasonable.

Condition B. The sub-regions {Ωj}Q
j=1 can be divided into four parts:

Dj =
∑

rj−1+1≤i≤rj

Ωi, j = 1, 2, 3, 4, r0 = 0, r4 = Q, (4.1)

where subdomains in Dj are disjoint, {D1, D2}, {D3, D4} and {D1
⋃
D2,

D3
⋃
D4} are the domain decomposition of D1

⋃
D2, D3

⋃
D4 and Ω, res-

pectively, which satisfy condition A.
Condition C. The sub-regions {Ωj}Q

j=1 can be divided into κ parts:

Dj =
∑

rj−1+1≤i≤rj

Ωi, j = 1, 2, . . . , κ, r0 = 0, rκ = Q, (4.2)

such that
(1) {Dj}κ

j=1 is a domain decomposition of Ω satisfying the condition A
and Dj

⋂
Dl = ∅ for l 6= j − 1, j + 1.

(2) For each 1 ≤ j ≤ κ, {Ωi}rj

i=rj−1+1 is a domain decomposition of Dj

satisfying the condition A and Ωi

⋂
Ωl = ∅ for l 6= i− 1, i+ 1.

Conditions B and C can be satisfied easily.
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Theorem 4.1 Assume that the domain decomposition satisfies the condition
B or condition C. Let (cn,un) be the solution of the system (1.1), (Cn,Un) be
the solution of the alternating iterative scheme, and m be the iterative times
at each time step. Then there exists the constant K, which is independent of
h, τ and m, such that

max
1≤n≤N

‖cn − Cn‖L2(Ω) + max
1≤n≤N

‖un − Un‖(L2(Ω))2

≤ K{hk+1 + τ + τ− 1
2 (τ + h)

m
4 }.

(4.3)

5 Conclusions

From the a priori error estimate (4.3), we see that the error results from
two parts, one from the approximation error of the finite element function
spaces and time discretization, which is bounded by O(hk+1 + τ), and other
from alternating iteration, which is bounded by O(τ−1/2(τ + h)m/4). To get
an approximate solution with an optimal global accuracy, infinitely iterative
cycles are not needed. Generally, if τ = O(hk+1) and m ≥ 6(k+ 1), then the
global error is bounded by O(hk+1 + τ). This means that only 6(k+1) cycles
are required.

Acknowledgments. This research was supported in part by China State
Major Key Project for Basic Researches and by both The Research Fund for
Doctoral Program of High Education and Trans-Century Training Program
Foundation for the Talents by China State Education Commission.

References

[1] Adams, R. A., Sobolev Spaces, New York. Academic Press, 1975.
[2] Brezzi, F., Douglas, J., Jr., Duran, R., and Marini, L. D., Mixed fi-

nite elements for second order elliptic problems in three space variables,
Numer. Math. 51 (1987), 237–250.

[3] Brezzi, F., Douglas, J., Jr., Fortin, M., and Marini, L. D., Efficient rec-
tangular mixed finite elements in two and three space variables, RAIRO
Model Math. Anal. Numer. 4(21) (1987), 581–604.

[4] Brezzi, F., Douglas, J., Jr., and Marini, L. D., Two families of mi-
xed finite elements for second order elliptic problems, Numer. Math.
47 (1985), 217–235.

[5] Chen, Z. and Douglas, J., Jr., Prismatic mixed finite elements for second
order elliptic problems, Calcolo 26 (1989), 135–148.



Domain Decomposition Algorithm 371

[6] Chou, S. H. and Li, Q., Mixed finite element methods for compressible
miscible displacement in porous media, Math. Comp. 57 (1991), 507–
527.

[7] Ciarlet, P. G., The Finite Element Methods for Elliptic Problems, North-
Holland, New York, 1978.

[8] Douglas, J., Jr., The numerical simulation of miscible displacement in
porous media, Comput. Methods Nonlin. Mech., North-Holland, Am-
sterdam, 1980.

[9] Douglas, J., Jr., Finite difference methods for two-phase incompressible
flow in porous media, SIAM J. Numer. Anal. 20 (1983), 681–696.

[10] Douglas, J., Jr. and Roberts, J. E., Numerical methods for a model for
compressible miscible Displacement in porous Media, Math. Comp. 41
(1983), 441–459.

[11] Douglas, J., Jr., Simulation of miscible displacement in porous media
by a modified method of characteristics procedure, Numerical Analysis.
Lecture Notes in Math 912, Springer-Verlag, Berlin, 1982.

[12] Douglas, J., Jr., Ewing, R. E., and Wheeler, M. F., The approxima-
tion of the pressure by a mixed method in the simulation of miscible
displacement, RAIRO, Anal. Numer. 17 (1983), 17–33.

[13] Douglas, J., Jr., Ewing, R. E., and Wheeler, M. F., A time-discretization
procedure for a mixed finite element approximation of miscible displa-
cement in poro media, RAIRO Anal. Numer. 17 (1983), 249–256.

[14] Duran, R., On the approximation of miscible displacement in porous
media by the modified methods of characteristics combined with a mixed
method. SIAM J. Numer. Anal. 25 (1988), 989–1001.

[15] Dryja, M. and Widlund, O. B., Some domain decomposition algorithms
for elliptic problems, Proceedings of the Conference on Iterative Methods
for Large Linear System held in Austin, D. Young, Jr. ed., Academic
Press, Orlando, 1989, 121–134.

[16] Lions, P. L., On Schwarz alternating method, Part I, Proceedings of
the first international symposium on domain decomposition methods for
partial differential equations, SIAM. Philadelphia, Glowinski, R., Golub,
G. H., Meurant, G. A., and Périaux, J. (eds.), 1988.

[17] Lions, P. L., On Schwarz alternating method, Part II, Proceedings of the
second international symposium on domain decomposition methods for
partial differential equations, SIAM. Philadelphia, Chan, T., Glowinski,
R., Périaux, J., and Widlund, O. B., eds., 1989.



372 Yang

[18] Raviart, P. A. and Thomas, J. M., A mixed finite element method for
2nd order elliptic problems, Mathematical Aspects of Finite Element
Methods, Lecture Notes in Math 606, Springer-Verlag, Berlin and New
York, 1977, 292–315.

[19] Wheeler, M. F., A priori error estimates for Galerkin approximations to
parabolic partial differential equations, SIAM J. Numer. Anal. 4 (1973),
723–759.

[20] Yang, D. P., Approximation and its optimal error estimate of displace-
ment of two-phase incompressible flow by mixed finite element and a
modified method of characteristics, Chinese Science Bulletin 35 (1990),
1686–1689.

[21] Yang, D. P., A characteristic mixed finite element method for displace-
ment problem of compressible flows in porous media, Science in China,
Series A (1998).

[22] Yuan, Y. R., Characteristic-mixed finite element method for enhanced
oil recovery simulation and optimal order error estimate, Chinese Science
Bulletin 38 (1993), 1761–1766.



A Boundary Element Method for Viscous
Flow on Multi-connected Domains

Dequan Yang Tigui Fan Xinyu Yang

Abstract

A viscous flow problem in multi-connected domains is studied using
a boundary element method. The results obtained are compared with
those in [3] using a finite element method. These results show that
the method used can treat the viscous flow with many different kinds
of boundary conditions. This method is convenient and faster than
others.

KEYWORDS: boundary element method, multi-connected domain, viscous
flow

1 Introduction

In practical viscous flow problems in multi-connected domains such as porous
springs, the piping and well drilling distribution in oil extraction is very im-
portant for engineering designs and is a very difficult problem to solve. Finite
difference methods face many difficulties because of complicated boundary
conditions. Finite element methods can treat many different boundary con-
ditions, but they need lots of input messages, occupy many RAMs, and take
a lot of time. Due to the nonlinearity of equations in fluid mechanics and
non-selfadjointness of differential operators, relevant variational functionals
hardly exist. For this reason, the finite element methods based on the method
of weighted residuals such as Galerkin’s approach, least squares, and colloca-
tion methods [2, 1] do not possess any physical meaning. They are nothing
but a pure optimum scheme for numerical treatment. Using newly developed
boundary element methods [4, 5], we study the above mentioned problems
in this paper. We change multi-connected domain viscous flows into nonli-
near boundary integration equations of the boundary velocity and boundary
pressure, then discretize boundary integral equations, and finally change the

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 373–377, 2000.
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velocity and pressure differential into the differential of the fundamental solu-
tion. This treatment that the differential of the unknown variables is changed
into that of the known variable makes the problem easier to solve. The bo-
undary variable is determined singly. After determining boundary points,
any inner points can be calculated. Other methods are difficult to do that.
In calculating nonlinear problems, creating grids is easier than finite element
methods. Integral equations are discretized in algebraic equations. Using
iterative methods, the unknown velocity and pressure are calculated. It is
important that the velocity and pressure is calculated separately. Comparing
with [3], this method is more effective.

2 A Fundamental Equation

Let the multi-connected domain be Ω with boundary Γ =
∑
i

Γti +
∑
j

Γvj(i =

1, 2, . . . , t, j = 1, 2, . . . , s). The known velocity and pressure on boundary Γvj

and Γti are shown in Fig. 1. In Ω, the dimensionless form of incompressible
viscous fluid is

∇ · T (V ) = ∇ · (V V ), ∇ · V = 0 in Ω, (2.1)

with the boundary conditions

T · ~n|Γti = ~ti, j = 1, 2, . . . , t, V |Γvj = Vj , j = 1, 2, . . . , s,

where T (V ) is the stress tensor corresponding to V and ~n is the outward unit
normal to Γ.

If W k and qk are fundamental solutions of Stokes’s equation and Tij(W k)
is the stress tensor corresponding to W k, we can obtain the integral equation

C(X)vk(X)=
∮
Γ ni(X0)Tij(W k(X − X0)0vj(X0)dΓ0

+
∮
Γ ni(X0)vi(X0)vj(X0)wk

j (X − X0)dΓ0

− ∮
Γ ni(X0)Tij(V (X0))0wk

j (X − X0)dΓ0

+
∫
Ω vi(X0)wj,i(X − X0)vj

(X0)dΩ0, k = 1, 2, 3,

(2.2)

where

C(X) = 1 in Ω, 1/2 on Γ, and 0 not in Ω.
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Formulas determining pressures are

P (X)=
∮
Γ ni(X0)

{
qi(X − X0)[vi(X0)vj(X0) − Tij(V (X0))0]

+ 2
Re

qi,j0(X − X0)vj(X0)
}
dΓ0

− ∫
Ω vi(X0)vj(X0)qi,j0(X − X0)dΩ, x ∈ Ω.

(2.3)

(2.2) and (2.3) are the fundamental equation treating a multi-connected do-
main.

3 Discretization of Boundary Integrals

Change Γ into N elements (for 2D) or N polygonal elements (for 3D) Γβ , β =
1, 2, . . . , N . Change the flow region Ω into E elements Ωγ , γ = 1, 2, . . . , E.
The velocity and pressure on Γβ are replaced by that at the center of the
figure. The velocity of Ωγ is also replaced by that at the center of the figure.

Formulas for discretization are given by

Cαvkα=
∑

βij Lkijαβniβvjβ − ∑
βj Mkjαβtjβ

+
∑

βij Mkjαβniβviβvjβ − ∑
γij Nkijαγvieγ

vjeγ
,

(3.1)

where α = Γ1, Γ2, . . . ,ΓN , e1, e2, . . . , eE , β = 1, 2, . . . , N , γ = 1, 2, . . . , E,
i, j, k = 1, 2, 3,

Lkijαβ =
∫

Γβ

Tij(W k(Xα − X0))0dΓ0,
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Mkjαβ =
∫

Γβ

wk
j (Xα − X0)dΓ0,

Nkijαγ =
∫

eγ

wk
j,i0(Xα − X0)dΩ0.

When Γβ is a small segment element, Ωγ is a triangle element (shown in
Fig. 2). Three sides of the triangle are as follows:

y = y1 + k1(x − x1), y = y2 + k2(x − x2), y = y3 + k3(x − x3).

The integrals of an arbitrary function f(x, y, xα, yα) on the triangle region
are

∫
∆γ

f(x, y, xα, yα)dΩ = −
3∑

l=1

∫ xm

xl

dx

∫ yl−kl(x−xl)

0
f(x, y, xα, yα)dy,

where l = 1, 2, 3 and m = 2, 3, 1. Analytic forms of geometric coefficients can
be obtained.

4 Numerical Solutions

After calculating Lkijαβ , Mkjαβ , and Nkijαγ , equation (3.1) can be solved by
using an iterative method. The pressure tjβ on Γv and velocity viβ on Γt can
be calculated first. We have N × N linear equations

1
2vl+1

kα =
∑

βin Lkijαβniβvl+1
iβ − ∑

βj Mkjαβti+1
jβ

+
∑

βij Mkjαβniβvl
iβvl

jβ − ∑
γij Nkijαγvl

ieγ
vl

jeγ
,

where k = 1, 2, 3, α = Γ1, Γ2, . . . ,ΓN , and

vl
kα=

∑
βij Lkijαβniβvjβ − ∑

βj Mkjαβtljβ

+
∑

βij Mkjαβvl
iβvl

jβniβ − ∑
γij Nkijαγvl−1

ieγ
vl−1

jer
.

The boundary stress and velocity are given by boundary conditions.

5 An Example and Conclusions

As an example, to compare with [3], we calculate the viscous flow in a rectan-
gular cavity having a rectangular obstacle. The rectangular cavity is 10 × 12
and rectangular obstacle is 1.7 × 1.7. The boundary conditions are

uΓi
=

{
1 −

( y

H

)2
, i = 1, 2,

0, i = 3, 4, 5,
vΓi

= 0, i = 1, 2, 3, 4, 5.
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Using a triangular grid, the viscous flow is calculated when Re = 30, 40. The
flow field distribution is shown in Fig. 3. In Fig. 3, a big vortex is formed
on the top of cavity and inclining to the left, two small vortexes are formed
on both angles of the cavity. Our results agree with [3] well. The velocity
distribution in the x direction in vertical centerlines and the y direction in
horizontal centerlines are shown in Fig. 4. Its changing laws agree with
experimental data. For accelerating convergence, we use a operator

vl+1
kα = vl

kα + 0.6(vl+1
kα − vl

kα).

The resulting scheme is effective.
Acknowledgements. This project is in part supported by NSFC.

References

[1] Chung, T. J., Finite Element Analysis in Fluid Dynamics, 1978.
[2] Connor, J. J. and Brebbia, C. A., Finite Element Techniques for Fluid

Flow, New Butterworths, 1976.
[3] Mizukami, A., A stream function-vorticity finite element formulation for

Navier-Stokes equations in multi-connected domains, Inter. J. Numer.
Methods Eng. 19 (1983), 1730-1741.

[4] Yang, Q. and Chen, G., Progress in Boundary Element Method of 2-
D Viscous Flow, Numerical Methods in Laminar and Turbuler Flow,
Vol. VIII, Pau, 2, 1993.

[5] Zhao, Z. and Yang, D., Boundary Element Methods, Inner Mongolia
University Press, 1994.



A Characteristic Difference Method for 2D
Nonlinear Convection-Diffusion Problems

Xi-Jun Yu Yonghong Wu

Abstract

In this paper we construct a characteristic difference method for
two-dimensional nonlinear convection-diffusion problems. These pro-
blems arise in the modeling of fluid flow and transport in porous media,
for example. The method is analysed mathematically and an error bo-
und is derived. Convergence of the method can be achieved under a
milder restriction in the temporal stepsize and spatial stepsize than
those required by existing methods.

KEYWORDS: convection, diffusion, characteristic, difference method, con-
vergence, error estimate

1 Introduction

Nonlinear convection-diffusion problems arise from many real world problems
such as underground percolation, air-pollution, flows, and chemical diffusion.
Various characteristic finite element and characteristic finite difference me-
thods [1, 4, 5] have been developed to solve the convection dominated linear
problems. However, the convergence of those methods requires ∆t to be in
the same order as h, namely ∆t = O(h). Durán [2] improved the methods to
allow ∆t to be in the higher order of h. But his analytic way of convergence
can not be applied into the nonlinear problems.

In this paper, we construct two characteristic difference methods based on
the linear and quadratic interpolations for two-dimensional convection domi-
nated nonlinear convection-diffusion problems. The methods are then analy-
sed mathematically and formulas for the estimation of errors are developed.
The problem considered is the two-dimensional nonlinear convection-diffusion
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problem with the Dirichlet boundary conditions:

c(x̄)∂u
∂t + b̄(x̄, u) · ∇u− [ ∂

∂x (a1(x̄, u)∂u
∂x ) + ∂

∂y (a1(x̄, u)∂u
∂y )]

= f(t, x̄, u) in Ω × (0, T ],

u(t, x̄) = 0on ∂Ω × (0, T ], u(0, x̄) = u0(x̄) in Ω,

(1.1)

where Ω is a rectangular domain, ∂Ω is the boundary of Ω, x̄ = (x, y),
b̄(x̄, u) = (b1(x̄, u), b2(x̄, u)), and ai(x̄, u) (i = 1, 2) are much smaller than
c(x̄) and b̄(x̄, u).

Assume that the solution of equation (1.1) exists and is unique and the
coefficients c, b̄, ai (i = 1, 2) and initial function u0 satisfy the following
conditions:

i.) ‖u0‖L∞(Ω) ≤ K1, ‖u‖L∞(0,T ;L∞(Ω)) ≤ K1.

ii.) For ∀(x̄, p) ∈ Ω × [−2K1, 2K1], there exist 0 < c1 ≤ c(x̄) ≤ c2,
|b(x̄, p)| ≤ K2, ai(x̄, p) ≥ a0 > 0, i = 1, 2.

iii.) The first order partial derivatives of bi(x̄, p) and ai(x̄, p) are bo-
unded and f(t, x̄, p) is Lipschitz continuous with respect to p ∈
[−2K1, 2K1].

Here K1, K2, c1, c2, and a0 are positive constants, Wm,p(Ω) denotes the
Sobolev space of m degree on Ω, and W k,∞(0, T ;Wm,p(Ω)) = {v, ∂sv

∂ts :
[0, T ] → Wm,p(Ω) and ||v||W s,∞(0,T ;W m,p(Ω)) < +∞, s = 1, 2, . . . , k}, where

||v||W s,∞(0,T ;W m,p(Ω)) = max
0≤i≤s

ess sup
0≤t≤T

||∂
iv

∂ti
||W m,p(Ω).

For simplicity, in the numerical analysis, let X(0, T ;Z(Ω)) = X(Z(Ω)),
Mi (i = 1, 2, . . .) denote bounded positive constants, and M̃(s1, s2, . . . , sr)
be a positive constant depending on s1, s2, . . . , sr.

2 Characteristic Difference Methods

Let ψ(x̄, u) =
√
c(x̄)2 + |b̄(x̄, u)|2 =

√
c(x̄)2 + b1(x̄, u)2 + b2(x̄, u)2 and τ(x̄, u)

denote the characteristic direction of the operator c(x̄)∂u
∂t + b̄(x̄, u) ·∇u. Then

∂u

∂τ
=

c(x̄)
ψ(x̄, u)

∂u

∂t
+
b̄(x̄, u)
ψ(x̄, u)

· ∇u.

Along the characteristic direction, equation (1.1) becomes

ψ(x̄, u)∂u
∂τ − [ ∂

∂x (a1(x̄, u)∂u
∂x ) + ∂

∂y (a1(x̄, u)∂u
∂y )] = f(t, x̄, u),

u(t, x̄) = 0, u(0, x̄) = u0(x̄).
(2.1)
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Let Ω̄h denote a mesh partition of the domain Ω, X0 and Y0 be the side
lengths of Ω, h1 = X0

J1
and h2 = Y0

J2
be the spatial stepsizes, ∆t = T

N be the
temporal stepsize, and tn = n∆t (n = 0, 1, . . . , N). To solve (2.1) numeri-
cally, approximate the derivative along τ by the difference quotient at point
(xi, yj , tn), namely

ψ(x̄i,j , u
n
i,j)(

∂u

∂τ
)n
i,j ≈ ψ(x̄i,j , u

n
i,j)

u(x̄i,j , tn) − u(x̃i,j , tn)√
(x̄i,j − x̃i,j)2 + ∆t2

= c(x̄i,j)
un

i,j − ũn−1
i,j

∆t
,

where x̄i,j = (xi, yj), x̃i,j = x̄i,j − b̄(x̄i,j , u
n
i,j)∆t/c(x̄i,j), c(x̄i,j) = c(xi, yj),

bk(x̄i,j , u
n
i,j) = bk(xi, yj , u

n
i,j) (k = 1, 2), un

i,j = u(xi, yj , tn), and ũn−1
i,j =

u(x̃i,j , tn−1). Further, by intruducing

δx,+ui,j =
un

i+1,j − un
i,j

h1
, δx,−ui,j =

un
i,j − un

i−1,j

h1
,

the partial derivatives of u with respect to x and y in (1.1) can be expressed
by

δx,−(a1δx,+u)n
i,j = h−2

1 [a1,i+ 1
2
(un

i+1,j − un
i,j) − a1,i− 1

2
(un

i,j − un
i−1,j)],

δy,−(a2δy,+u)n
i,j = h−2

2 [a2,i+ 1
2
(un

i+1,j − un
i,j) − a2,i− 1

2
(un

i,j − un
i−1,j)],

where a1,i+ 1
2

= 1
2 [a1(x̄i,j , u

n
i,j)+a1(x̄i+1,j u

n
i+1,j)] and a2,i+ 1

2
= 1

2 [a2(x̄i,j , u
n
i,j)

+a2(x̄i+1,j , un
i+1,j)].

Assume that {Un−1
i,j } is known and let

ˆ̃xi,j = x̄i,j − b̄(x̄i,j , U
n−1
i,j )∆t/c(x̄i,j) (2.2)

be an approximation value of x̃i,j , where ˆ̃xi,j and x̃i,j refer to quantities at
tn but for simplicity, we omitted the superscript n.

Let Un−1(x̄) be the piecewise interpolation function obtained from {Un−1
i,j }

on the spatial mesh Ω̄h and Ũn−1
i,j = Un−1(ˆ̃xi,j); then a characteristic diffe-

rence scheme for the solution of equation (2.1) is

ci,j
Un

i,j−Ũn−1
i,j

∆t − [δx,−(A1δx,+U)n
i,j + δy,−(A2δy,+U)n

i,j ] = f(tn, x̄i,j , U
n−1
i,j )

i = 1, 2, . . . , J1 − 1, j = 1, 2, . . . , J2 − 1, n = 1, 2, . . . , N,

U0
i,j = u0(x̄i,j), i = 1, 2, . . . , J1 − 1, j = 1, 2, . . . , J2 − 1,

Un
i,j = 0, x̄i,j ∈ ∂Ω

(2.3)
where A1,i+ 1

2
= 1

2 [a1(x̄i,j , U
n−1
i,j ) + a1(x̄i+1,j , U

n−1
i+1,j)] and A2,i+ 1

2
= 1

2 [a2(x̄i,j ,
Un−1

i,j ) +a2(x̄i+1,j , Un−1
i+1,j)].
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Remark 1. The error of the characteristic difference scheme (2.3) on the
time direction is of order O(∆t).

Remark 2. If the interpolating function Un−1(x̄) is piecewise bilinear,
(2.3) is called a linear characteristic difference scheme. If Un−1(x̄) is piecewise
biquadratic, (2.3) is known as a quadratic characteristic difference scheme.

To increase the accuracy of time integration, we discretize the first term
of (2.1) by

ψ(x̄i,j , u
n
i,j)(

∂u
∂τ )n

i,j≈ ψ(x̄i,j , u
n
i,j)

3
2 u(x̄i,j ,tn)−2u(x̃i,j ,tn−1)+ 1

2 u(˜̃xi,j ,tn−2)√
(x̄i,j−x̃i,j)2+∆t2

= c(x̄i,j)
3
2 un

i,j−2ũn−1
i,j

+ 1
2
˜̃un−2

i,j

∆t

where x̃i,j = x̄i,j − b̄(x̄i,j , u
n
i,j)∆t/c(x̄i,j), ˜̃xi,j = x̄i,j − 2b̄(x̄i,j , u

n
i,j)∆t/c(x̄i,j),

ũn−1
i,j = u(x̃i,j , tn), and ˜̃u

n−2
i,j = u(˜̃xi,j , tn). This scheme has the second-order

accuracy on the temporal direction.
Assume that {Un−1

i,j } and {Un−2
i,j } are known and Un−1(x̄) and Un−2(x̄)

are obtained by the piecewise interpolation bilinear or biquadratic functions
of {Un−1

i,j } and {Un−2
i,j } on the spatial mesh Ω̄h, respectively. Then we obtain

the multistep characteristic difference scheme for (2.1)

ci,j
3
2 Un

i,j−2Ũn−1
i,j

+ 1
2

˜̃U
n−2

i,j

∆t − [δx,−(A1δx,+U)n
i,j + δy,−(A1δy,+U)n

i,j ]

= f(tn, x̄i,j , θ
n−1
i,j ), i = 1, . . . , J1 − 1, j = 1, . . . , J2 − 1, n = 2, . . . , N,

U0
i,j = u0(x̄i,j), i = 1, 2, . . . , J1 − 1, j = 1, 2, . . . , J2 − 1,

Un
i,j = 0, x̄i,j ∈ ∂Ω,

(2.4)

where Ũn−1
i,j = Un−1(ˆ̃xi,j , tn−1),

˜̃U
n−2

i,j = U(ˆ̃̃xi,j , tn−2), ˆ̃xi,j = x̄i,j − b̄(x̄i,j ,

θn−1
i,j ) ∆t/c(x̄i,j),

ˆ̃̃xi,j = x̄i,j −2b̄(x̄i,j , θ
n−1
i,j ) ∆t/c(x̄i,j), θi,j = 2Un−1

i,j −Un−2
i,j ,

A1,i+ 1
2
= 1

2 [a1(x̄i,j , θ
n−1
i,j ) +a1(x̄i+1,j , θn−1

i+1,j)], and A2,j+ 1
2

= 1
2 [a2 (x̄i,j , θn−1

i,j )
+a2(x̄i,j+1, θn−1

i,j+1)].
With (2.4), we obtain Un

i,j for n = 2, 3, . . . while {U1
i,j} can be obtained

by the Taylor expansion combining with equation (1.1), namely

U1
i,j = u0(x̄i,j) +

c(x̄i,j)
ψ(x̄i,j , u0(x̄i,j))

(
∂u

∂t
)0∆t,

where ||u1 − U1|| = O(∆t2).
Similar to the characteristic difference scheme (2.3), (2.4) is known as the

multistep characteristic difference scheme.
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To analyse the convergence property of the characteristic difference me-
thods (2.3) and (2.4), we define the inner products and norms for the mesh
functions Y and Z on Ω̄h as follows:

(Y, Z) =
∑J1−1,J2−1

i,j=1 yi,jzi,jh1h2, ||Y ||2 = (Y, Y ),

[Y, Z) =
∑J1−1,J2−1

i=0,j=1 yi,jzi,jh1h2, |[Y ||2 = (Y, Y ),

(Y, Z] =
∑J1−1,J2−1

I=1,j=0 yi,jzi,jh1h2, ||Y ]|2 = (Y, Y ),

[Y, Z] =
∑J1,J2

i,j=0 yi,jzi,jh1h2, |[Y ]|2 = [Y, Y ].

3 Convergence
of the Characteristic Difference Scheme

In this section, we give the convergence analysis of the singlestep characte-
ristic difference scheme (2.3). The convergence of multistep characteristic
difference scheme (2.4) can be proved similarly.

Let u(x̄, t) be the exact solution of (2.1) and Un
i,j be the approximate

solution obtained from the characteristic difference scheme (2.3). (2.1) is
discretized at (x̄i,j , tn). We have

ci,j
un

i,j − ũn−1
i,j

∆t
− [δx,−(a1δx,+u)n

i,j + δy,−(a2δy,+u)n
i,j ] = f(tn, x̄i,j , u

n
i,j) + en

i,j

(3.1)
where ũn−1

i,j = un−1(x̃i,j,) = u(x̃i,j,, tn−1) and en
i,j is a local truncation error.

Let ξn = un − Un. Then from (2.3) and (3.1), we have

ci,j
ξn

i,j−ξn−1(ˆ̃xi,j)
∆t − [δx,−(A1δx,+ξ)n

i,j + δy,−(A2δy,+ξ)n
i,j ] = (f(tn, x̄i,j , u

n
i,j)

−f(tn, x̄i,j , U
n−1
i,j )) + [δx,−((a1 −A1)δx,+u)n

i,j + δy,−((a2 −A2)δy,+u)n
i,j ]

+ci,j
un−1(x̃i,j)−un−1(ˆ̃xi,j)

∆t + en
i,j .

Multipying equation this equation by ξn
i,jh1h2, summing for i = 1 to J1 − 1

and j = 1 to J2 − 1, noting that ξn
0,j = ξJ1,j = ξi,0 = ξi,J2 = 0, and using the

discrete Green formula, we have

( ξn−ξ̃n−1

∆t , ξn) + [A1δx,+ξ
n, δx,+ξ

n) + (A2δy,+ξ
n, δy,+ξ

n] = (f(tn, x̄, un)

−f(tn, x̄, Un−1), ξn) + (δx,−(a1 −A1)δx,+u)n, ξn) + (δy,−((a2 −A2)δy,+u)n,

ξn) + (cun−1(x̃i,j)−un−1(ˆ̃xi,j)
∆t , ξn) + (en, ξn) = I1 + I2 + I3 + I4,

(3.2)
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where c, ξ, ak, Ak (k = 1, 2), and cξ are the mesh functions on Ω̄h such that
c = {c(x̄1,1), c(x̄1,2), . . . , c(x̄J1−1,J2−1)}, etc. As

|[un −un−1]|2 = ∆t2
J1,J2∑
i,j=0

(
un

i,j − un−1
i,j

∆t
)2h1h2 ≤ M̃(||u||W 1,∞(L∞))∆t2, (3.3)

by the assumption iii.), we have an estimate for the first term on the right
hand side of (3.2)

|I1|≤ K3||un − Un−1||||ξn|| ≤ K3(||un − un−1|| + ||ξn−1||)||ξn||
≤ M̃(||u||W 1,∞(L∞))(||ξn||2 + ||ξn−1||2 + ∆t2),

(3.4)

where K3 is a positive constant. For the second term on the right hand side
of (3.2), we have

|I2|= |((a1 −A1)nδx,+u
n, δx,+ξ

n)| + |((a2 −A2)nδy,+u
n, δy,+ξ

n)|
≤ ε[|[δx,+ξ

n||2 + ||δy,+ξ
n]|2] +M1[|[(a1 −A1)nδx,+u

n||2
+||(a2 −A2)nδy,+u

n]|2],

where ε is a positive constant. Since

|[(a1 −A1)nδx,+u
n||2 ≤ ||un||2W 1,∞

J1−1,J2−1∑
i=0,j=1

((a1 −A1)n
i+ 1

2 ,j)
2h1h2,

from assumption iii.), we have

|(a1 −A1)n
i+ 1

2 ,j
| ≤ 1

2K3{|un
i,j − Un−1

i,j | + |un
i+1,j − Un−1

i+1,j |}
≤ 1

2K3{|un
i,j − un−1

i,j | + |un
i+1,j − un−1

i+1,j | + |ξn−1
i,j | + |ξn−1

i+1,j |},

which, together with (3.3), yields

||(a1 −A1)nδx,+u
n||2 ≤ M̃(||un||W 1,∞ , ||u||W 1,∞(L∞))(||ξn−1||2 + ∆t2).

Smiliarly, we can obtain

||(a2 −A2)nδy,+u
n||2 ≤ M̃(||un||W 1,∞ , ||u||W 1,∞(L∞))(||ξn−1||2 + ∆t2).

Therefore, we have an estimate for the second term of the right hand side of
(3.2), namely

|I2| ≤ ε[||δx,+ξ
n||2+||δx,+ξ

n||2]+M̃(||un||W 1,∞ , ||u||W 1,∞(L∞))(||ξn−1||2+∆t2).
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We now estimate the third term of the right hand side of (3.2). By
assumption iii.), we have

| ci,j

∆t (x̃i,j − ˆ̃xi,j)| = |b1(xi,j , u
n
i,j) − b1(xi,j , U

n−1
i,j )|

+|b2(xi,j , u
n
i,j) − b2(xi,j , U

n−1
i,j )| ≤ K3(|un

i,j − un−1
i,j | + |ξn−1

i,j |),
which yields

|I3|≤ M̃(||un−1||W 1,∞)(||un − un−1|| + ||ξn−1||)||ξn||
≤ M̃(||un−1||W 1,∞ , ||u||W 1,∞(L∞))(||ξn||2 + ||ξn−1||2 + ∆t2).

If |∇u| ∈ L∞(L∞), from assumptions i.)–iii.), there exists a constant K∗

such that

| b̄(x̄, u(x̄, t))
c(x̄)

| + | d
dx̄

b̄(x̄, u(x̄, t))
c(x̄)

| ≤ K∗.

Similar to [1], we define the norm for α(x̄) ∈ L∞(Ω̄) by

||α||2
l̃2

=
J1−1,J2−1∑

i,j=1

max{|α(x̄)|2, |x̄− x̄i,j | ≤ K∗∆t}h1h2.

It is also not difficult to obtain

||en||2 ≤ M1(||un||2H4(h4
1 + h4

2) + ||∂
2u

∂τ2 ||2
L2(tn−1,tn;l̃2)∆t

2).

Therefore, we have

|I4| ≤ 1
2
||ξn||2 +

1
2
M1(||un||2H4(h4

1 + h4
2) + ||∂

2u

∂τ2 ||2
L2(tn−1,tn;l̃2)∆t

2).

We now consider the estimate of left hand side of (3.2). By the triangle
inequality and assumption ii.), we have

I1 +I2 +I3 +I4 ≥ 1
2∆t

[(cξn, ξn)−(cξ̃n−1, ξ̃n−1)]+a0[|[δx,+ξ
n||2 + ||δy,+ξ

n]|2].

where ξ̃n−1 = ξn−1(ˆ̃x). To simplify this inequality, we need to find a relation
between (cξn−1, ξn−1) and (cξ̃n−1, ξ̃n−1). Set

αn
i,j =

b1(x̄i,j , U
n−1
i.j )∆t

ci,jh1
, βn

i,j =
b1(x̄i,j , U

n−1
i.j )∆t

ci,jh2
.

Then ˆ̃xi,j = (ˆ̃xi, ˆ̃yj), and ˆ̃xi = xi − αn
i,jh1, ˆ̃yj = yj − βn

i,jh2. By assumptions
i.) and ii.), we can choose ∆t and h1, h2 such that

|αn
i,j | ≤ 1, |βn

i,j | ≤ 1.
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Hence ˆ̃xi,j = (ˆ̃xi, ˆ̃yj) ∈ [xi−1, xi+1] × [yj−1, yj+1] and the point ˆ̃xi,j must be
in one of the four domains I, II, III and IV as shown in Fig. 1.

III II

IIV

(xi−1, yj+1) (xi, yj+1) (xi+1, yj+1)

(xi+1, yj)

(xi+1, yj−1)

(xi, yj)

(xi, yj−1)(xi−1, yj−1)

4(xi, yj+1) 3(xi+1, yj+1)

2(xi+1, yj)1(xi, yj)

II
(xi−1, yj)

Figure 1 Figure 2

For simplicity, we have omitted the superscripts n and n−1 for ξi,j . Assume
that the point ˆ̃xi,j is in domain II and the value of Un−1(x̄) at ˆ̃xi,j is obtained
by the piecewise bilinear interpolation of {Un−1

i,j }. The bilinear interpolation
function is

L1(ξ)(x, y) = N1(x, y)ξi,j +N2(x, y)ξi+1,j +N3(x, y)ξi+1,j+1 +N4(x, y)ξi,j+1,

where ξ = u− U and Ni(x, y) denotes the interpolating function correspon-
ding to (xi, yj) as shown in Fig. 2. Thus we have

L1(ξ)(ˆ̃xi, ˆ̃yj) = ξi,j−αi,jδx,+ξi,jh1−βi,jδy,+ξi,jh2+αi,jβi,jδx,+(ξi,j+1−ξi,j)h1.

Hence we see that
∑J1−1,J2−1

i,j=1
(ˆ̃xi,ˆ̃yj)∈II

ci,jL
2
1(ξ)(ˆ̃xi, ˆ̃yj)h1h2

≤∑J1−1,J2−1
i,j=1

(ˆ̃xi,ˆ̃yj)∈II

ci,jξ
2
i,jh1h2 + ε

4∆t
∑J1,J2

i,j=1
(ˆ̃xi,ˆ̃yj)∈II

[|δx,+ξi,j |2

+|δy,+ξi,j+1|2]h1h2 +M2∆t
∑J1−1,J2−1

i,j=1
(ˆ̃xi,ˆ̃yj)∈II

|ξi,j |2h1h2.

Similarly, for ˆ̃xi,j ∈ II, we can prove that the above inequality holds for ˆ̃xi,j ∈
I, III, and IV. Therefore, we have

∑J1−1,J2−1
i,j=1 ci,jL

2
1(ξ

n−1)(ˆ̃xi, ˆ̃yj)h1h2 ≤ (cξn−1, ξn−1)

+ε[|[δx,+ξ
n−1||2 + ||δy,+ξ

n−1]|2]∆t+M2||ξn−1||2∆t.
Noting that

ξ(ˆ̃xi, ˆ̃yj) = u(ˆ̃xi, ˆ̃yj) − U(ˆ̃xi, ˆ̃yj) = u(ˆ̃xi, ˆ̃yj) − L1(u)(ˆ̃xi, ˆ̃yj) + L1(ξ)(ˆ̃xi, ˆ̃yj),

where L1(u)(x, y) denotes the bilinear interpolation function of {ui,j} on Ω̄h,
we can estimate u(ˆ̃xi, ˆ̃yj)−L1(u)(ˆ̃xi, ˆ̃yj) as follows. Let ˆ̃xi,j ∈ II and assume
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that II is divided into four equal rectangular elements Ω1, Ω2, Ω3, Ω4, and
ˆ̃xi,j ∈ Ω1. Then we have

|ρ1| = |ˆ̃xi − xi| ≤ min(h1
2 , k∆t),

|ρ2| = |ˆ̃yj − xj | ≤ min(h2
2 , k∆t).

Further, we expand u(xi+1, yj), u(xi+1,
yj+1), u(xi, yj+1), and u(ˆ̃xi, ˆ̃yj) as the
Taylor series at the point (xi, yj) by

4(xi, yj+1) 3(xi+1, yj+1)

2(xi+1, yj)1(xi, yj)

Ω4 Ω3

Ω2Ω1

·(ˆ̃xi, ˆ̃yj)

Figure 3.

u(xi+1, yj) = ui,j + h1(∂u
∂x )i,j + h2

1
2 (∂2u

∂x2 )(xθ1 , yj),

u(xi+1, yj+1) = ui,j + h1(∂u
∂x )i,j + h2(∂u

∂y )i,j + h2
1
2

∂2u
∂x2 (xθ2 , yθ2)

+h1h2
∂2u

∂x∂y (xθ2 , yθ2) + h2
2
2

∂2u
∂y2 (xθ2 , yθ2),

u(xi, yj+1) = ui,j + h2(∂u
∂y )i,j + h2

2
2 (∂2u

∂y2 )(xi, y
θ3),

u(ˆ̃xi, ˆ̃yj) = ui,j + ρ1(∂u
∂x )i,j + ρ2(∂u

∂y )i,j + ρ2
1
2

∂2u
∂x2 (x′, y′) + ρ1ρ2

∂2u
∂x∂y (x′, y′)

+ρ2
2
2

∂2u
∂y2 (x′, y′),

where xθk = (1 − θk)xi+1 + θkxi, y
θk = (1 − θk)yj+1 + θkyj , x

′ = (1 − θ)ˆ̃xi +
θxi, y

′ = (1 − θ)ˆ̃yj + θyj , 0 ≤ θk ≤ 1 (k = 1, 2, 3), and 0 ≤ θ ≤ 1. Thus we
have

|L1(un−1)(ˆ̃xi, ˆ̃yj) − un−1(ˆ̃xi, ˆ̃yj)|
≤ M̃(||un−1||H2)[h1 min(h1

2 ,K∆t) + h2 min(h2
2 ,K∆t)].

Similarly, for ˆ̃xi,j ∈ Ω1, we can prove that this inequality holds for ˆ̃xi,j ∈
Ω2, Ω3, Ω4. Therefore we have the following lemma.

Lemma 3.1 If Un−1(x̄) is obtained by the bilinear interpolation, we have

(cξ̃n−1, ξ̃n−1) =
∑J1−1,J2−1

i,j=1 ci,j(ξ̃n−1
i,j )2h1h2 ≤∑J1−1,J2−1

i,j=1 ci,jL
2
1(ξ

n−1)h1h2

+M
∑J1−1,J2−1

i,j=1 ci,j |un−1(ˆ̃xi,j , ˆ̃yi,j) − L1(un−1)(ˆ̃xi, ˆ̃yj)|2h1h2

≤ (cξn−1, ξn−1) + ε[||δx,+ξ
n−1||2 + ||δy,+ξ

n−1||2]∆t+M2||ξn−1||2∆t
+M̃(||un−1||H2)[h1 min(h1

2 ,K∆t) + h2 min(h2
2 ,K∆t)]2.
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If the value of Un−1(x̄) at
point ˆ̃xi,j ∈ II is obtained
by the piecewise biquadra-
tic interpolation of {Un−1

i,j },
the biquadratic interpola-
tion function is

(xi−1, yj+1)4 3(xi+1, yj+1)

2(xi+1, yj−1)(xi−1, yj−1)1

(xi−1, yj)8

7(xi, yj+1)

6(xi+1, yj)

5(xi, yj−1)

9(xi, yj)

Figure 4.

L2(ξ)(x, y) = N1(x, y)ξi−1,j−1 +N2(x, y)ξi+1,j−1 +N3(x, y)ξi+1,j+1

+N4(x, y)ξi−1,j+1 +N5(x, y)ξi,j−1 +N6(x, y)ξi+1,j +N7(x, y)ξi,j+1

+N8(x, y)ξi−1,j +N9(x, y)ξi,j ,

whereNi(x, y) (i = 1, . . . , 9) denotes the interpolating function corresponding
to node i as shown in Fig. 4. Then we have

L2(ξ)(ˆ̃xi, ˆ̃yj) = ξi,j − 1
2αi,j(δx,+ξi,j + δx,−ξi,j)h1 − 1

2βi,j(δy,+ξi,j

+δy,−ξi,j)h2 + 1
2α

2
i,jδx,+(ξi,j − ξi−1,j)h1 + 1

2β
2
i,jδy,+(ξi,j − ξi,j−1)h2

+ 1
4αi,jβi,j(δx,+ξi,j+1 + δx,−ξi,j+1 − δx,+ξi,j−1 − δx,−ξi,j−1)h1

+ 1
4α

2
i,jβi,j [δx,+(ξi,j−1 − ξi−1,j−1) − δx,+(ξi,j+1 − ξi−1,j+1)]h1

+ 1
4αi,jβ

2
i,j [δy,+(ξi−1,j − ξi−1,j−1) − δy,+ξi+1,j − ξi+1,j−1)]h2

+ 1
4α

2
i,jβ

2
i,j [δy,+(ξi−1,j − ξi−1,j−1) − 2δy,+(ξi,j − ξi,j−1)

+δy,+(ξi+1,j − ξi+1,j−1)]h2
2.

Similar to the bilinear interpolation, we also obtain an inequality for the
biquadratic interpolation through a tediously long computation, namely

∑J1−1,J2−1
i,j=1 ci,jL

2
2(ξ)(ˆ̃xi, ˆ̃yj)h1h2

≤ (cξn−1, ξn−1) +M3||ξn−1||2∆t+ ε[|[δx,+ξ
n−1||2 + ||δy,+ξ

n−1]|2]∆t
|L2(un−1)(ˆ̃xi, ˆ̃yj) − un−1(ˆ̃xi, ˆ̃yj)|

≤ M̃(||un−1||H3)[h2
1 min(h1

2 ,K∆t) + h2
2 min(h2

2 ,K∆t)].

Therefore, we obtain

Lemma 3.2 if Un−1(x̄) is obtained by the biquadratic interpolation, we have

(cξ̃n−1, ξ̃n−1) ≤ (cξn−1, ξn−1) +M3||ξn−1||2∆t+ ε[|[δx,+ξ
n−1||2

+||δy,+ξ
n−1]|2]∆t+ M̃(||un−1||H3)[h2

1 min(h1
2 ,K∆t) + h2

2 min(h2
2 ,K∆t)]2.
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From (3.4), the inequalities for Ii (i = 1, 2, 3, 4), and Un−1(x̄) obtained from
the bilinear interpolation, we have

1
2 [(cξn, ξn) − (cξn−1, ξn−1)] + a0[||δx,+ξ

n−1||2 + ||δy,+ξ
n−1||2]∆t

≤ ε[||δx,+ξ
n||2 + ||δy,+ξ

n||2]∆t+ ε[||δx,+ξ
n−1||2 + ||δy,+ξ

n−1||2]∆t
+M̃(||u||W 1,∞(L∞), ||u||L∞(W 1,∞))(||ξn||2 + ||ξn−1||2 + ∆t2)∆t

+ 1
2M1(||u||L∞(H4))(h4

1 + h4
2) + ||∂2u

∂τ2 ||L2(tn−1,tn;l̃2)∆t
2)∆t

+M̃(||un−1||H2)[h1 min(h1
2 ,K∆t) + h2 min(h2

2 ,K∆t)]2.

Choosing ε = a0
4 and summing up the inequality in Lemma 3.2 for n, we

obtain

||ξn||2 + a0
∑n

m=0[||δx,+ξ
m||2 + ||δy,+ξ

m||2]∆t
≤ M̃(||u||W 1,∞(L∞), ||u||L∞(H4), ||∂2u

∂τ2 ||L2(l̃2))(
∑n

m=0 ||ξm||2∆t+ h4
1 + h4

2

+∆t2) + M̃(||un−1||H2)[h1 min( h1

2
√

∆t
,K∆t) + h2 min( h2

2
√

∆t
,K∆t)]2.

Applying the Gronwell inequality, we obtain

||ξn|| + (
∑n

m=0[||δx,+ξ
m||2 + ||δy,+ξ

m||2]∆t) 1
2 ≤ M̃(||u||W 1,∞(L∞), ||u||L∞(H4),

||∂2u
∂τ2 ||L2(l̃2))([h1 min( h1

2
√

∆t
,K∆t) + h2 min( h2

2
√

∆t
,K∆t)] + ∆t).

(3.5)
Therefore, we have the theorems.

Theorem 3.3 Let u ∈ W 1,∞(L∞) ∩ L∞(H4) be the solution of equation
(1.1) and ∂2u

∂τ2 ∈ L2(l̃2), and let {Un
i,j} be the solution of equation (2.3) based

on the bilinear interpolation. Then the error estimation (3.5) holds.

Theorem 3.4 Under the assumptions of Theorem 3.3 about u and the so-
lutions {Un

i,j} of equation (2.3) based on the biquadratic interpolations, the
error ξn = un − Un satisfies the following inequality

‖ξn‖ + (
∑N

0 [‖δx,+ξ
n‖2 + ‖δy,+ξ

n‖2]∆t)
1
2

≤ M̃(||u||W 1,∞(L∞), ||u||L∞(H4), ||∂2u
∂τ2 ||L2(l̃2))(h

2
1 + h2

2 + ∆t).
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Fractional Step Methods for Compressible
Multicomponent Flow in Porous Media

Yirang Yuan

Abstract

This paper discusses characteristic finite difference and finite ele-
ment fractional step methods for three-dimensional multicomponent
flow in porous media. Optimal order estimates in the L2-norm are
derived for the errors in the approximate solution.

KEYWORDS: compressible flow, characteristic finite difference and finite
element, fractional steps, L2-error estimates

1 Introduction

In modern numerical simulation of prospecting and exploiting oil-gas resour-
ces, the problems met are often three-dimensional, large-scale, large-scope
and extralong-term ones. The node number is as large as tens of thousands
or even hundreds of millions, which calls for the new technology of fractional
steps to solve the problems. First, a kind of characteristic finite difference
fractional step methods is developed. Thick and thin grids are used to form a
complete set of techniques, such as the piecewise product threefold-quadratic
interpolation, the calculus of variations, the multiplicative commutation rule
of difference operators, and the decomposition of high order difference ope-
rators. The prior estimates and techniques are adopted. Optimal order esti-
mates in the L2-norm are derived to determine the errors in the approximate
solution. Next, we establish a kind of characteristic finite element operator-
splitting methods and use the operator-splitting, characteristic method, the
calculus of variations, the energy method, negative norm estimates, and the
theory of prior estimates and techniques. Optimal order estimates in the L2

norm are derived for the errors in the approximate solution. These methods
are successfully used in oil-gas resource estimation, enhanced oil recovery
simulation, and seawater intrusion numerical simulation.

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 390–403, 2000.
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The mathematical model for the three-dimensional compressible multi-
component displacement problems is the nonlinear partial equations with
initial-boundary conditions [2, 8, 9, 4, 6]

(a) d(c)
∂p

∂t
+ ∇ · u = q(x, t), x ∈ Ω, t ∈ J = (0, T ],

(b) u = −a(c)∇p, x ∈ Ω, t ∈ J,
(1.1)

and

Φ(x)
∂cα
∂t

+ bα(c)
∂p

∂t
+ u · ∇cα − ∇ · (D∇cα) = g(x, t, cα),

x ∈ Ω, t ∈ J, α = 1, 2, . . . , nc − 1,
(1.2)

where p(x, t) is the pressure function, cα(x, t) is the concentration of αth com-

ponent, α = 1, 2, . . . , nc, nc is the number of components,
nc∑

α=1
cα(x, t) = 1,

d(c) = Φ(x)
nc∑

α=1
zαcα, Φ(x) is the porosity, zα is the “constant compressibi-

lity” factor for the αth component, u is the Darcy velocity, a(c) = k(x)µ(c)−1,
k(x) is the permeability of the rock, µ(c) is the viscosity of the fluid, bα(c) =

Φ(x)cα
{
zα −

nc∑
j=1

zjcj
}
, and D(x) is the diffusion coefficient. Let c(x, t) =

(
c1(x, t), c2(x, t), . . . , cnc−1(x, t)

)T . Then the pressure function p(x, t) and
the concentration functions c(x, t) are obtained.

Here we assume that no flow occurs across the boundary:

(a) u · γ = 0, x ∈ ∂Ω,
(b) (D∇cα − cαu) · γ = 0, x ∈ ∂Ω, α = 1, 2, . . . , nc − 1,

(1.3)

where γ is the outer normal to ∂Ω. In addition, the initial conditions

(a) p(x, 0) = p0(x), x ∈ Ω,
(b) cα(x, 0) = cα,0(x), x ∈ Ω, α = 1, 2, . . . , nc − 1,

(1.4)

must be given.
For planar two-phase immiscible flow, Douglas, Ewing, Russell, and many

others have published a series of fundamental papers on the characteristic
finite difference and finite element methods [1, 7, 5, 3]. For compressible
two-phase displacement problems, Douglas and others have published their
papers [2, 8, 9, 4]. On the basis of the preceding works this article makes a
further study of the characteristic finite difference and finite element fractio-
nal step methods and L2-error estimates for a three-dimensional compressi-
ble multicomponent displacement problem. The three-dimensional problem
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is decomposed to solve three one-dimensional problems continuously, thus
greatly reducing the amount of computation work and making the actual
computation of the project possible. This method is used successfully in oil-
gas resources estimation [15, 12], enhanced oil recovery simulation [10, 11],
and seawater intrusion numerical simulation [13, 14].

Generally, this is a positive definite problem

(a) 0 < a∗ ≤ a(c) ≤ a∗, 0 < d∗ ≤ d(c) ≤ d∗, 0 < D∗ ≤ D(x) ≤ D∗,

(b)
∣∣∣∂a
∂c

(x, c)
∣∣∣ +

∣∣∣∂d
∂c

(x, c)
∣∣∣ ≤ K∗,

(1.5)

where a∗, a∗, d∗, d∗, D∗, D∗, and K∗ are constants. Our assumptions on the
regularity of the solution of (1.1)–(1.5) are given collectively by

p, cα ∈ L∞(W 4,∞)
⋂
W 1,∞(W 1,∞),

∂2p

∂t2
,
∂2cα
∂τ2 ∈ L∞(L∞),

α = 1, 2, . . . , nc − 1.

Assume that Ω = {[0, 1]}3 and problem (1.1)–(1.5) is Ω-periodic. Then
the boundary condition (1.3) can be dropped [2, 7, 5].

In this paper M and ε express a general positive constant and a general
positive small constant, respectively, and they may have different meanings
in different places.

2 Finite Difference Fractional Steps

Let Ω = {[0, 1]}3, h = 1/N , Xijh = (ih, jh, kh)T , tn = n∆t W (Xijk, t
n) =

Wn
ijk,

(a) An
i+1/2,jk =

[
a(Xijk, C

n
ijk) + a(Xi+1,jk, C

n
i+1,jk)

]
/2,

(b) an
i+1/2,jk =

[
a(Xijk, c

n
ijk) + a(Xi+1,jk, c

n
i+1,jk)

]
/2,

(2.1)

and An
i,j+1/2,k, An

ij,k+1/2, a
n
i,j+1/2,k, and an

ij,k+1/2 be defined analogously. Let

(a) δx̄1(A
nδx1P

n+1)ijk = h−2
[
An

i+1/2,jk(Pn+1
i+1,jk − Pn+1

ijk )

−An
i−1/2,jk(Pn+1

ijk − Pn+1
i−1,jk)

]
,

(b) δx̄2(A
nδx2P

n+1)ijk = h−2
[
An

i,j+1/2,k(Pn+1
i,j+1,k − Pn+1

ijk )

−An
i,j−1/2,k(Pn+1

ijk − Pn+1
i,j−1,k)

]
,

(2.2)

(c) δx̄3(A
nδx3P

n+1)ijk = h−2
[
An

ij,k+1/2(P
n+1
ij,k+1 − Pn+1

ijk )

−An
ij,k−1/2(P

n+1
ijk − Pn+1

ij,k−1)
]
,

(d) ∇h(An∇Pn+1)ijk = δx̄1(A
nδx1P

n+1)ijk

+δx̄2(A
nδx2P

n+1)ijk + δx̄3(A
nδx3P

n+1)ijk.
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For the fluid equation (1.1), the finite difference fractional step scheme is
given by

(a) d(Cn
ijk)

P
n+1/3
ijk − Pn

ijk

∆t
= δx̄1(A

nδx1P
n+1/3)ijk + δx̄2(A

nδx2P
n)ijk

+δx̄3(A
nδx3P

n)ijk + q(Xijk, t
n+1), 1 ≤ i ≤ N,

(b) d(Cn
ijk)

P
n+2/3
ijk − P

n+1/3
ijk

∆t
= δx̄2

(
Anδx2(P

n+2/3 − Pn)
)
ijk
, 1 ≤ j ≤ N,

(c) d(Cn
ijk)

Pn+1
ijk − P

n+2/3
ijk

∆t
= δx̄3

(
Anδx3(P

n+1 − Pn)
)
ijk
, 1 ≤ k ≤ N.

(2.3)
Compute the approximate Darcy velocity U = (U1, U2, U3)T as follows:

Un
1,ijk = −1

2

[
An

i+1/2,jk

Pn
i+1,jk − Pn

ijk

h
+An

i−1/2,jk

Pn
ijk − Pn

i−1,jk

h

]
, (2.4)

with Un
2,ijk and Un

3,ijk being the corresponding average in the other direction.

As the flow is essentially in the characteristic direction, we apply the
modified method of characteristic to the first-order parts of (1.2), thus en-
suring a high accuracy of the numerical results [1, 7, 5, 3]. Let Ψ(x, u) =

[Φ2(x) + |u|2]1/2 and ∂/∂τ =
1
Ψ

{Φ∂/∂t + u · ∇}. Equation (1.2) can be
rewritten in the form

ψ
∂cα
∂τ

− ∇ · (D∇cα) + bα(c)
∂p

∂t
= g(x, t, cα), x ∈ Ω, t ∈ J.

Approximate
∂cn+1

α

∂τ
=

∂cα
∂τ

(x, tn+1) by a backward difference quotient in

τ -direction,
∂cn+1

α

∂τ
≈ cn+1

α − cnα
(
x− Φ−1(x)un+1(x)∆t

)
∆t

√
1 + Φ−2(x)|un+1(x)|2 .

For the system of concentration equations, the characteristic difference
fractional step schemes are given by

(a) Φijk

C
n+1/3
α,ijk − Ĉn

α,ijk

∆t
= δx̄1(Dδx1C

n+1/3
α )ijk

+δx̄2(Dδx2C
n
α)ijk + δx̄3(Dδx3C

n
α)ijk

−bα(Cn
ijk)

Pn+1
ijk − Pn

ijk

∆t
+ g(Xijk, t

n, Ĉn
α,ijk),

1 ≤ i ≤ N, α = 1, 2, . . . , nc − 1,
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(b) Φijk

C
n+2/3
α,ijk − C

n+1/3
α,ijk

∆t
= δx̄2

(
Dδx2(C

n+2/3
α − Cn

α)
)
ijk
,

1 ≤ j ≤ N, α = 1, 2, . . . , nc − 1,

(c) Φijk

Cn+1
α,ijk − C

n+2/3
α,ijk

∆t
= δx̄3

(
Dδx3(C

n+1
α − Cn

α)
)
ijk
,

1 ≤ k ≤ N, α = 1, 2, . . . , nc − 1,

(2.5)

where we interpret Cn
α(x) as the piecewise threefold-quadratic interpolation

[15], Ĉn
α,ijk = Cn

α(X̂n
ijk), and X̂n

ijk = Xijk − Φ−1
ijkU

n
ijk∆t.

The initial approximation is given by

P 0
ijk = p0(Xijk), C0

α,ijk = cα,0,ijk,

1 ≤ i, j, k ≤ N, α = 1, 2, . . . , nc − 1.
(2.6)

The algorithm for a time step is as follows: Assume the approximate
solution {Pn

ijk, C
n
α,ijk(α = 1, 2, . . . , nc − 1)} at time tn is known. First, from

scheme (2.3a), the method of speed up is used to get the solution of transition
sheaf {Pn+1/3

ijk } along the x1 direction. From (2.3b), we obtain {Pn+2/3
ijk } and

from (2.3c), {Pn+1
ijk }. Next, from scheme (2.5a), by using the method of speed

up, we get the solution of transition sheaf {Cn+1/3
α,ijk } along the x1 direction.

From (2.5b), we obtain {Cn+2/3
α,ijk } and from (2.5c), {Cn+1

α,ijk}. So a complete
time step can be taken. Finally, because of the positive definite condition,
only one solution of this problem can be obtained.

3 Convergence Analysis of Finite Difference

Let π = p − P and ξα = cα − Cα, where p and cα(α = 1, 2, . . . , nc − 1) are
the exact solutions of this problem and P and Cα(α = 1, 2, . . . , nc − 1) are
the difference solutions.

First, consider the fluid equation for equation (2.3a), by using (2.3b) and
(2.3c), we get the equivalent form

d(Cn
ijk)

Pn+1
ijk − Pn

ijk

∆t
− ∇h(An∇hP

n+1)ijk = q(Xijk, t
n+1)

−(∆t)2
{
δx̄1(A

nδx1(d
−1(Cn)δx̄2(A

nδx2))) + δx̄1(A
nδx1(d

−1(Cn)

δx̄3(A
nδx3))) + δx̄2(A

nδx2(d
−1(Cn)δx̄3(A

nδx3)))
}
dtP

n
ijk

+(∆t)3δx̄1(A
nδx1(d

−1(Cn)δx̄2(A
nδx2(d

−1(Cn)

δx̄3(A
nδx3dtP

n) . . .)ijk, 1 ≤ i, j, k ≤ N,

(3.1)
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where dtP
n
ijk = {Pn+1

ijk − Pn
ijk}/∆t. By (1.1) (t = tn+1) and (3.1), we have

the pressure error equations

d(Cn
ijk)

πn+1
ijk − πn

ijk

∆t
− ∇h(An∇hπ

n+1)ijk = −(∆t)2
{
δx̄1(A

nδx1

(d−1(Cn)δx̄2(A
nδx2))) + δx̄1(A

nδx1(d
−1(Cn)δx̄3(A

nδx3)))

+δx̄2(A
nδx2(d

−1(Cn)δx̄3(A
nδx3)))

}
dtπ

n
ijk + (∆t)3δx̄1(A

nδx1

(d−1(Cn)δx̄2(A
nδx2(d

−1(Cn)δx̄3(A
nδx3dtπ

n) . . .)ijk

+(∆t)2
{
δx̄1(A

nδx1(d
−1(Cn)δx̄2(A

nδx2))) + δx̄1(A
nδx1(d

−1(Cn)

δx̄3(A
nδx3))) + δx̄2(A

nδx2(d
−1(Cn)δx̄3(A

nδx3)))
}
dtp

n
ijk

−(∆t)3δx̄1(A
nδx1(d

−1(Cn)δx̄2(A
nδx2(d

−1(Cn)

δx̄3(A
nδx3dtp

n) . . .)ijk + σn+1
ijk , 1 ≤ i, j, k ≤ N ;

(3.2)

here dtπ
n =

1
∆t

(πn+1−πn) and |σn+1
ijk | ≤ M

{∥∥∥∂2p

∂t2

∥∥∥
L∞(L∞)

,
∥∥∥∂p
∂t

∥∥∥
L∞(W 4,∞)

,

‖p‖L∞(W 4,∞), ‖cα‖L∞(W 3,∞) (α = 1, 2, . . . , nc − 1)
}

(h2 + ∆t). Suppose that
the space and time steps satisfy

∆t = O(h2). (3.3)

By testing (3.2) against δtπn
ijk = dtπ

n
ijk∆t = πn+1

ijk − πn
ijk and summing by

parts, we have

< d(Cn)dtπ
n, dtπ

n > ∆t+
1
2
{< An∇hπ

n+1,∇hπ
n+1 >

− < An∇hπ
n,∇hπ

n >} ≤ M{h4 + (∆t)2}∆t+ ε|dtπ
n|20∆t

−(∆t)3
{
< δx̄1(A

nδx1(d
−1(Cn)δx̄2(A

nδx2dtπ
n))), dtπ

n >

+ < δx̄1(A
nδx1(d

−1(Cn)δx̄3(A
nδx3dtπ

n))), dtπ
n > + < δx̄2(A

nδx2

(d−1(Cn)δx̄3(A
nδx3dtπ

n))), dtπ
n >

}
+ (∆t)4 < δx̄1(A

nδx1

(d−1(Cn)δx̄2(A
nδx2(d

−1(Cn)δx̄3(A
nδx3dtπ

n) . . .)ijk, dtπ
n > .

(3.4)

By the multiplicative commutation rule of difference operators and the de-
composition of high order difference operators, we obtain

|dtπ
n|20∆t+

1
2
{< An∇hπ

n+1,∇hπ
n+1 > − < An∇hπ

n,∇hπ
n >}

≤ M
{|πn+1|21 + |πn|21 + h4 + (∆t)2

}
(∆t).

(3.5)

Next, consider the concentration equations. For equations (2.5a), (2.5b),
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and (2.5c), we get the equivalent from

Φijk

Cn+1
α,ijk − Ĉn

α,ijk

∆t
− ∇h(D∇hC

n+1)ijk = −bα(Cn
ijk)

Pn+1
ijk − Pn

ijk

∆t
+g(Xijk, t

n, Ĉn
α,ijk) − (∆t)2

{
δx̄1(Dδx1(Φ

−1δx̄2(Dδx2)))

+δx̄1(Dδx1(Φ
−1δx̄3(Dδx3))) + δx̄2(Dδx2(Φ

−1δx̄3(Dδx3)))
}
dtC

n
α,ijk

+(∆t)3δx̄1(Dδx1(Φ
−1δx̄2(Dδx2(Φ

−1δx̄3(Dδx3dtC
n
α) . . .)ijk,

1 ≤ i, j, k ≤ N, α = 1, 2, . . . , nc − 1.

(3.6)

Similarly, we can obtain

|dtξ
n
α|20∆t+ < D∇hξ

n+1
α ,∇hξ

n+1
α > − < D∇hξ

n
α,∇hξ

n
α >

≤ M{|ξn|21 + |ξn+1|21 + |∇hπ
n|20 + h4 + (∆t)2}, (3.7)

where |ξ|21 = |ξ|20 + |∇hξ|20.
For (3.5), summing on 0 ≤ n ≤ L and for (3.7), summing on 0 ≤ n ≤ L,

1 ≤ α ≤ nc − 1, we have

L∑
n=0

|dtπ
n|20∆t+ |πL+1|21

≤ ε
L−1∑
n=0

|dtξ
n|20∆t+M

{
h4 + (∆t)2 +

L∑
n=1

|πn+1|21∆t
}
,

(3.8)

and
L∑

n=0

|dtξ
n|20∆t+ |ξL+1|21 ≤ M

{
h4 + (∆t)2 +

L∑
n=1

[|ξn+1|21 + |πn|21
]
∆t

}
. (3.9)

Combining (3.8) and (3.9) and applying the discrete Gronwall inequality, we
have

L∑
n=0

[|dtπ
n|20 + |dtξ

n|20
]
∆t+ |πL+1|21 + |ξL+1|21 ≤ M{h4 + (∆t)2}. (3.10)

Theorem I Suppose that the exact solution of problems (1.1)-(1.5) sa-
tisfies condition: p, cα(α = 1, 2, . . . , nc − 1) ∈ W 1,∞(W 1,∞)

⋂
L∞(L∞),

∂p/∂t, ∂cα/∂t(α = 1, 2, . . . , nc − 1) ∈ L∞(W 4,∞), ∂2p/∂t2, ∂2cα/∂τ
2(α =

1, 2, . . . , nc − 1) ∈ L∞(L∞). Adopt the characteristic finite difference frac-
tional steps schemes (2.3) and (2.5). Let the discretization parameter satisfy
relation (3.3). The error estimates hold

‖p− P‖L̄∞(J;h1) +
nc−1∑
α=1

‖cα − Cα‖L̄∞(J;h1) + ‖dt(p− P )‖L̄2(J;l2)

+
nc−1∑
α=1

‖dt(cα − Cα)‖L̄∞(J;l1) ≤ M∗{h2 + (∆t)},
(3.11)
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where ‖f‖L̄∞(J;X) = sup
n∆t≤T

‖fn‖X , ‖g‖L̄2(J;X) = sup
n∆t≤T

{ N∑
n=0

‖gn‖2
X∆t

}1/2,

M∗ = M∗
{

‖p‖W 1,∞(W 1,∞), ‖p‖L∞(W 4,∞),
∥∥∥∂p
∂t

∥∥∥
L∞(W 4,∞)

,
∥∥∥∂2p

∂t2

∥∥∥
L∞(L∞)

,

‖cα‖W 1,∞(W 1,∞), ‖cα‖L∞(W 4,∞),
∥∥∥∂cα
∂t

∥∥∥
L∞(W 4,∞)

,
∥∥∥∂2cα
∂τ2

∥∥∥
L∞(L∞)

, (α =

1, 2, . . . , nc − 1)
}
.

4 Finite Element Operator-Splitting

The finite element method for problem (1.1)–(1.4) based on the weak form
is given by

(a)

(
d
∂p

∂t
, v

)
+

(
a(c)∇p,∇v) =

(
q(c), v

)
,

v ∈ H1(Ω), t ∈ J = (0, T ],

(b)

(
Φ
∂cα
∂t

, z
)

+ (u · ∇cα, z) + (D∇cα,∇z) +
(
bα(c)

∂p

∂t
, z

)
=

(
g(cα), z

)
, z ∈ H1(Ω), t ∈ J, α = 1, 2, . . . , nc − 1.

(4.1)

Assume that d = d1(x1)d2(x2)d3(x3) and Φ = Φ1(x1)Φ2(x2)Φ3(x3). We
discuss a finite element operator-splitting method approximation of the fluid
equation (4.1a). We equidistantly subdivide the region Ω. The coding of
nodes: {x1,α|0 ≤ α ≤ Nx1}, {x2,β |0 ≤ β ≤ Nx2}, and {x3,γ |0 ≤ γ ≤ Nx3} is
used. The global coding of three-dimensional mesh region i (i = 1, 2, . . . , N),
N = (Nx1 + 1)(Nx2 + 1)(Nx3 + 1) is obtained. The tensor product index of
node i is

(
α(i), β(i), γ(i)

)
, where α(i) is the number of the x1-axis, β(i) is

the number of the x2-axis, and γ(i) is the number of the x3-axis. The tensor
product basis can be rewritten as products of one-dimensional basis functions
in the manner

Ni(x1, x2, x3) = ϕα(i)(x1)ψβ(i)(x2)ωγ(i)(x3)
= ϕα(x1)ψβ(x2)ωγ(x3), 1 ≤ i ≤ N.

(4.2)

If Nhp
= ϕ⊗ ψ ⊗ ω is a finite element space, let

W =
{
w

∣∣∣w, ∂w
∂xi

,
∂2w

∂xi∂xj
(i 6= j),

∂3w

∂x1∂x2∂x3
∈ L2(Ω)

}
.
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Note that Nhp ⊂ W [22,23]. The approximation properties are given by the
inequalities

inf
χ∈Nh

{ 3∑
m=0

hm
p

∑
i, j, k = 0, 1
i+ j + k = m

∥∥∥ ∂m(u− χ)
∂xi

1∂x
j
2∂x

k
3

∥∥∥
0

}
≤ Mhk+1

p ‖u‖k+1, (4.3)

where hp = max{N−1
x1
, N−1

x2
, N−1

x3
} is the subdivision step.

We discuss a characteristic finite element operator-splitting method ap-
proximation of the concentration equations (4.1b); similarly, we equidistantly
subdivide the region Ω and use the coding of nodes: {x1,λ|0 ≤ λ ≤ Nx1},
{x2,µ|0 ≤ µ ≤ Nx2}, and {x3,χ|0 ≤ χ ≤ Nx3}. The global coding j

(j = 1, 2, . . . ,M), M = (Mx1 + 1)(Mx2 + 1)(Mx3 + 1) is obtained. The
tensor product index of node j is

(
λ(j), µ(j), χ(j)

)
. The tensor product ba-

sis can be rewritten as products of one-dimensional basis functions in the
manner

Mj(x1, x2, x3) = Φλ(j)(x1)Ψµ(j)(x2)Ωχ(j)(x3)
= Φλ(x1)Ψµ(x2)Ωχ(x3), 1 ≤ j ≤ M.

(4.4)

Let the finite element space Mhc = Mh = Φ ⊗ Ψ ⊗ Ω. Note that Mh ⊂ W .
The approximation properties are given by the inequalities

inf
ϕ∈Mh

{ 3∑
m=0

hm
c

∑
i, j, k = 0, 1
i+ j + k = m

∥∥∥ ∂m(u− ϕ)
∂xi

1∂x
j
2∂x

k
3

∥∥∥
0

}
≤ Mhl+1

c ‖u‖l+1, (4.5)

where hc = max{M−1
x1
,M−1

x2
,M−1

x3
} is the subdivision step.

The characteristic finite element two-level operator-splitting scheme of
problem (4.1): When t = tn, if {Pn

h , C
n
h } ∈ Nh ×Mnc−1

h are known, we find
the finite element solution {Pn+1

h , Cn+1
h } ∈ Nh ×Mnc−1

h , t = tn+1. First, the
finite element scheme of the fluid equation (4.1a):

(d dtp
n
h, vh) +

(
a(cnh)∇Pn

h ,∇vh

)
+ λp∆t(d∇dtP

n
h ,∇vh)

+(λp∆t)2
3∑

i 6=j,i,j=1,2,3

(
d
∂2dtP

n
h

∂xi∂xj
,
∂2vh

∂xi∂xj

)
+ (λp∆t)3

+
(
d

∂3dtP
n
h

∂x1∂x2∂x3
,

∂3vh

∂x1∂x2∂x3

)
=

(
q(x, tn, Cn

h ), vh

)
, ∀vh ∈ Nh,

(4.6)

Un
h = −a(Cn

h )∇Pn
h , (4.7)
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where dtP
n
h = (Pn+1

h − Pn
h )/∆t,

3∑
i 6=j,i,j=1,2,3

(
d
∂2dtP

n
h

∂xi∂xj
,
∂2vh

∂xi∂xj

)
=

(
d
∂2dtP

n
h

∂x1∂x2
,
∂2vh

∂x1∂x2

)

+
(
d
∂2dtP

n
h

∂x2∂x3
,
∂2vh

∂x2∂x3

)
+

(
d
∂2dtP

n
h

∂x3∂x1
,
∂2vh

∂x3∂x1

)
,

and λp is a chosen constant.
As the flow is essentially in the characteristic direction, we apply the

modified method of characteristic to the first-order parts of (4.1b), thus en-
suring a high accuracy of the numerical results [1, 7, 5, 3]. Let ψ(x, u) =
[Φ2(x) + |u|2]1/2 and ∂/∂τ = ψ−1{Φ∂/∂t + u · ∇}. We write (4.1b) in the
form (

ψ
∂cα
∂τ

, z
)

+ (D∇cα,∇z) +
(
bα(c)

∂p

∂t
, z

)
=

(
g(cα, z)

)
,

z ∈ H1(Ω), t ∈ J, α = 1, 2, . . . , nc − 1.
(4.8)

Approximate
∂cn+1

α

∂τ
=
∂cα
∂τ

(x, tn+1) by a backward difference quotient in the

τ -direction,
∂cn+1

α

∂τ
≈ cn+1

α (x) − cnα
(
x− un+1∆t/Φ(x)

)
∆t(1 + Φ−2|un+1|2)1/2 .

For the concentration equations (4.8), the characteristic finite element
operator-splitting procedure is

(
Φ
Cn+1

α,h − Ĉn
α,h

∆t
, zh

)
+ (D∇Cn

α,h,∇zh) + λc∆t(Φ∇dtC
n
α,h,∇zh)

+(λc∆t)2
3∑

i 6=j,i,j=1,2,3

(
Φ
∂2dtC

n
α,h

∂xi∂xj
,
∂2zh

∂xi∂xj

)
+ (λc∆t)3

+
(
Φ

∂3dtC
n
α,h

∂x1∂x2∂x3
,

∂3zh

∂x1∂x2∂x3

)
+

(
bα(Cn

h )dtP
n
h , zh

)
=

(
g(Ĉn

α,h), zh

)
, ∀zh ∈ Mh, α = 1, 2, . . . , nc − 1,

(4.9)

where Ĉn
α,h = Cn

α,h(x̂), x̂ = x− Un
h ∆t/Φ(x), and λc is a chosen constant.

For the fluid equation (4.6), if Pn+1
h =

∑
α,β,γ

ξn+1
αβγϕαψβωγ , then (4.6) can

be written in the form∑
α,β,γ

(ξn+1
αβγ − ξn

αβγ)(dϕα ⊗ ψβ ⊗ ωγ , ϕα ⊗ ψβ ⊗ ωγ)

+λp∆t
∑

α,β,γ

(ξn+1
αβγ − ξn

αβγ)
{
(dϕ′

α ⊗ ψβ ⊗ ωγ , ϕ
′
α ⊗ ψβ ⊗ ωγ)

+(dϕα ⊗ ψ′
β ⊗ ωγ , ϕα ⊗ ψ′

β ⊗ ωγ) + (dϕα ⊗ ψβ ⊗ ω′
γ , ϕα ⊗ ψβ ⊗ ω′

γ)
}

+(λp∆t)2
∑

α,β,γ

(ξn+1
αβγ − ξn

αβγ)
{
(dϕ′

α ⊗ ψ′
β ⊗ ωγ , ϕ

′
α ⊗ ψ′

β ⊗ ωγ)

(4.10)
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+(dϕα ⊗ ψ′
β ⊗ ω′

γ , ϕα ⊗ ψ′
β ⊗ ω′

γ) + (dϕ′
α ⊗ ψβ ⊗ ω′

γ , ϕ
′
α ⊗ ψβ ⊗ ω′

γ)
}

+(λp∆t)3
∑

α,β,γ

(ξn+1
αβγ − ξn

αβγ)(dϕ′
α ⊗ ψ′

β ⊗ ω′
γ , ϕ

′
α ⊗ ψ′

β ⊗ ω′
γ) = ∆tFn.

Let

Cx1 =
( ∫ 1

0
d1ϕα1ϕα2dx1

)
, Ax1 =

( ∫ 1

0
d1ϕ

′
α1
ϕ′

α2
dx1

)
,

Cx2 =
( ∫ 1

0
d2ψβ1ψβ2dx2

)
, Ax2 =

( ∫ 1

0
d2ψ

′
β1
ψ′

β2
dx2

)
,

Cx3 =
( ∫ 1

0
d3ωγ1ωγ2dx3

)
, Ax3 =

( ∫ 1

0
d3ω

′
γ1
ω′

γ2
dx3

)
.

Then we have

(Cx1 + λp∆tAx1) ⊗ (Cx2 + λp∆tAx2) ⊗ (Cx3 + λp∆tAx3)
(ξn+1 − ξn) = ∆tFn,

(4.11)

where

Fn
αβγ = −(

a(Cn
h )∇Pn

h ,∇(ϕα ⊗ ψβ ⊗ ωγ)
)

+
(
q(Cn

h ), ϕα ⊗ ψβ ⊗ ωγ

)
. (4.12)

We point out that (4.11) can be solved by an alternating-direction.
For the concentration equation (4.9), if Cn+1

α,h =
∑

λ,µ,χ

ζn+1
α,λµχΦλΨµΩχ, it

can be written in the form∑
λ,µ,χ

(ζn+1
α,λµχ − ζn

α,λµχ)(ΦΦλ ⊗ Ψµ ⊗ Ωχ,Φλ ⊗ Ψµ ⊗ Ωχ)

+λc∆t
∑

λ,µ,χ

(ζn+1
α,λµχ − ζn

α,λµχ)
{
(ΦΦ′

λ ⊗ Ψµ ⊗ Ωχ,Φ′
λ ⊗ Ψµ ⊗ Ωχ)

+(ΦΦλ ⊗ Ψ′
µ ⊗ Ωχ,Φλ ⊗ Ψ′

µ ⊗ Ωχ) + (ΦΦλ ⊗ Ψµ ⊗ Ω′
χ,Φλ ⊗ Ψµ ⊗ Ω′

χ)
}

+(λc∆t)2
∑

λ,µ,χ

(ζn+1
α,λµχ − ζn

α,λµχ)
{
(ΦΦ′

λ ⊗ Ψ′
µ ⊗ Ωχ,Φ′

λ ⊗ Ψ′
µ ⊗ Ωχ)

+(ΦΦλ ⊗ Ψ′
µ ⊗ Ω′

χ,Φλ ⊗ Ψ′
µ ⊗ Ω′

χ) + (ΦΦ′
λ ⊗ Ψµ ⊗ Ω′

χ,

Φ′
λ ⊗ Ψµ ⊗ Ω′

χ)
}

+ (λc∆t)3
∑

λ,µ,χ

(ζn+1
α,λµχ − ζn

α,λµχ)(ΦΦ′
λ ⊗ Ψ′

µ ⊗ Ω′
χ,

Φ′
λ ⊗ Ψ′

µ ⊗ Ω′
χ) = ∆tGn

α, α = 1, 2, . . . , nc − 1,
(4.13)

where

Dx1 =
( ∫ 1

0
Φ1Φλ1(x1)Φλ2(x1)dx1

)
, Bx1 =

( ∫ 1

0
Φ1Φ′

λ1
Φ′

λ2
dx1

)
,

Dx2 =
( ∫ 1

0
Φ2Ψµ1Ψµ2dx2

)
, Bx2 =

( ∫ 1

0
Φ2Ψ′

µ1
Ψ′

µ2
dx2

)
,

Dx3 =
( ∫ 1

0
Φ3Ωχ1Ωχ2dx3

)
, Bx3 =

( ∫ 1

0
Φ3Ω′

χ1
Ω′

χ2
dx3

)
,

(Dx1 + λc∆tBx1) ⊗ (Dx2 + λc∆tBx2) ⊗ (Dx3 + λc∆tBx3)

(ζn+1
α − ζn

α) = ∆tGn
α, α = 1, 2, . . . , nc − 1,

(4.14)
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and

Gn
α,λµχ =

1
∆t

(
Φ(Ĉn

α,h − Cn
α,h),Φλ ⊗ Ψµ ⊗ Ωχ

)
−(
D∇Cn

α,h,∇(Φλ ⊗ Ψµ ⊗ Ωχ)
) − (

bα(Cn
h )dtP

n
h ,Φλ ⊗ Ψµ ⊗ Ωχ

)
+

(
g(Ĉn

α,h),Φλ ⊗ Ψµ ⊗ Ωχ

)
.

(4.15)
Similarly, we point out that (4.13) can be solved by an alternating-direction.

Theorem II Suppose that the exact solution of problem (1.1)–(1.5) is
smooth. Adopt the characteristic finite element operator-splitting scheme
(4.6), (4.7), and (4.9). Suppose that k ≥ 1, l ≥ 1, and the spatial and time
discretizations satisfy the relations ∆t = O(h2

p) = O(h2
c), h

k+1
p = o(h3/2

c ),
and hl+1

c = o(h3/2
p ). Then the error estimate holds

‖p− Ph‖L̄∞(J;L2(Ω)) +
nc−1∑
α=1

‖cα − Cα,h‖L̄∞(J;L2(Ω))

+‖dt(p− Ph)‖L̄2(J;L2(Ω)) + hc

nc−1∑
α=1

‖cα − Cα,h‖L̄2(J;H1(Ω))

≤ M∗{∆t+ hk+1
p + hl+1

c },

(4.16)

where ‖g‖L̄∞(J;X) = sup
n∆t≤T

‖gn‖, ‖g‖L̄2(J;X) = sup
N∆t≤T

(
N∑

n=0
‖gn‖2

X)1/2, and

the constant M∗ depends on p, c, and its derivatives.

5 Applications

The numerical method has already been used in the numerical simulation for
evolutionary history [15, 12], their mathematical model:

(a)
∇ ·

(K
µ

∇p
)

=
(
α(1 − Φ) + βΦ

)∂p
∂t

− α(1 − Φ)
∂s

∂t

+
(
α(1 − Φ) + βΦ

)∂ph

∂t
, X = (x1, x2, x3)T ∈ Ω, t ∈ J,

(b) ∇ · [Ks∇T ] − cωρω∇ · (V T ) +Q = csρs
∂T

∂t
, x ∈ Ω, t ∈ J,

(c)
∂Φ
∂t

= −α(1 − Φ)
(∂s
∂t

− ∂p

∂t
+
∂ph

∂t

)
, x ∈ Ω, t ∈ J.

(5.1)

The numerical method has also been used in the numerical simulation for
enhanced oil recovery simulation [10, 11]. Their mathematical model is

Φ
∂ci
∂t

+ ∇ ·
( np∑

j=1

cijuj

)
− ∇ ·

( np∑
j=1

ΦsjDj(uj)∇cij
)

= Qi(ci),

x ∈ Ω, t ∈ J, i = 1, 2, . . . , nc.

(5.2)
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Moreover, this method has been used in the numerical simulation for seawater
intrusion [14,15]. Their mathematical model is

(a) ∇ · (a∇H) = Ss
∂H

∂t
− q, x ∈ Ω, t ∈ J,

(b) ∇ · (ΨD∇c) − V · ∇c = Ψ
∂c

∂t
+ ΨSsc

∂H

∂t
−q(c− c∗), x ∈ Ω, t ∈ J.

(5.3)
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A Model and Its Solution Method for a
Generalized Unsteady Seepage Flow Problem

Guoyou Zhang Tigui Fan Zhongsheng Zhao
Dequan Yang

Abstract

A model and its solution method for a generalized unsteady seepage
flow problem are given. Using this method, many generalized unsteady
seepage flow control equations are described. Using the solutions to
these equations, the pressure distribution of vertical crevice and level
wells is obtained. We can analyze the unsteady testing material of oil
wells.

KEYWORDS: generalized unsteady seepage flow, control equations, oil well

1 Introduction

The study of seepage flow is important in engineering design. The new tech-
nology of oil field development is hard to be treated. They are related to
the study of seepage flow. Some models and their solution methods have
been developed for seepage flow. Using Green’s functions and minor images,
Ozcan and Raghavan [1, 2] gave some important results; also, see [3]. A mo-
del and its solution method for a generalized advective seepage flow problem
is given. Using this method, many generalized unsteady seepage flow con-
trol equations are described. The pressure distribution of the seepage flow
is obtained. Three formulas are given with different α and β. The formulas
become approximately linear or steady state with the dimensionless time in-
creasing. The source solutions are obtained when α−β+2 > 0. The pressure
distribution of vertical crevice and level wells is given from the solutions. We
can analyze the unsteady testing material of oil wells with these results. All
these results show that the method is effective.

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 404–408, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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2 A Mathematical Model

If α and β are control parameters, we can change many seepage flow problems
into generalized control equations for the unsteady Darcy flow of a weak
compressible fluid in a porous medium:

∂

∂rD

(
rβ
D

∂pD

∂rD

)
= rα

D

∂pD

∂tD
, 0 ≤ α ≤ 3, 0 ≤ β ≤ 5, (2.1)

where α = θϕ +γ −1, β = θµ +γ −1, pD = k0h∆p/(cpQµ0b), ∆p = p−pi for
injection wells, ∆p = pi − p for production wells, tD = ctk0t/(φµ0Ctr

2
w), and

rD = r/rw. Here h is the medium thickness. φ the porosity, µ0 the viscosity,
ct the compressible coefficient, rw the well radius, cp and Ct unit conversion
coefficients, pi the initial pressure, θφ the interval changing coefficient, θk the
osmosis changing coefficient, θµ the fluid viscosity changing coefficient, and
γ the fractal dimension. Form (2.1) owns an extensive meaning. It can be
changed to various generalized unsteady seepage flow control equations with
different α and β. If Q is out of a vertical well, the unsteady control equation
can be obtained for an even equal thickness

∂2pD

∂r2
D

+
β

rD

∂pD

∂rD
= rα−β

D

∂pD

∂tD
, (2.2)

with the initial condition

pD(rD, 0) = 0, (2.3)

the inner condition of the well
(

rβ
D

∂pD

∂rD

)
rD=1

= −1, (2.4)

the out boundary condition

pD(∞, tD) = 0, (2.5)

and the pressure at the well wall

p̃SD(s) = p̃SD(1, tD). (2.6)

Eqs. (2.2)–(2.5) are unsteady seepage flow formulas of an even equal thickness
vertical production well.
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3 Solution

Making the Laplace transform for form (2.2), if s is the Laplace transform
variable and

p̃(rD, s) =

∞∫
0

pD(rD, tD)e−stDdtD,

we can obtain
∂2p̃D

∂r2
D

+
β

rD

∂p̃D

∂rD
= srα−β

D p̃D,

whose complete solution is

p̃D(rD, s) =




√
r1−β
D

(
c1Iγ

(
Z1

√
r
(α−β+2)
D

)
+ c2Kγ

(
Z1

√
r
(α−β+2)
D

))
,

α − β + 2 > 0,√
r1−β
D

(
c1

√
r

√
(1−β)2+4s

D + c2

√
r

−
√

(1−β)2+4s

D

)
,

α − β + 2 = 0,√
r1−β
D

(
c1Iγ

(
Z2

√
r
(α−β+2)
D

)
c2Kγ

(
Z2

√
rα−β+2
D

))
,

α − β + 2 < 0,

where Iγ(·) and Kγ(·) are the γ step Bessel functions of second type:

γ =
1 − β

α − β + 2
, Z1 =

2
√

s

α − β + 2
, Z2 =

2
√

s

β − α − 2
.

We can also obtain the pressure distribution in the medium from (2.4) and
(2.5)

p̃D(rD, tD) =




√
r
(1+β)
D Ir(Z1

√
r
(α−β+2)
D )

S
√

SIr−1(Z1)
, α − β + 2 > 0,

2
√

r
(1−β)
D

√
r

−
√

(r−β)2+4s

D

s(β +
√

(1 − β)2 + 4s − 1)
, α − β + 2 = 0,

√
r
(1−β)
D IrZ2

√
r
(α−β+2)
D

s
√

sIr−1(Z2)
, α − β + 2 < 0.

(3.1)

When the dimensionless time become longer, the gradual results of form (3.1)
are

pSD(tD) ≈ 1
β − 1

ifα − β + 2 < 0,
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and if α − β + 2 > 1,

pSD(tD) ≈




1
β − 1

, β > 1,

1
α + 1

(LntD + 2Ln(α + 1) + γ) , β = 1,

1
γ

1
Γ1−γ

(α − β + 2)2γ−1tγD, β < 1,

.

We can see the change trend of the pressure and pressure derivative from this
equation.

There is a real space solution under the point source inner boundary
condition for the first case of the complete solution. Other solution conditions
do not change. The point source inner boundary condition is

(
rβ
D∂pD

∂rD

)

rD→0

= −1.

When making the Laplace transform, the pressure distribution is

p̃D(rD, s) =
1

s
√

s

2
Γ(1 − γ)

( √
s

α − β + 2

)1−γ √
r
(1−β)
D Kγ

(
Z1

√
r
(α−β+2)
D

)
,

which can be inverted as follows:

pD(rD, tD) =
1

Γ(1 − γ)(α − β + 2)1−2γ

tD∫
0

τγ−1 exp

(
− rα−β+2

D

(α − β + 2)2τ

)
dτ.

Beier’s [4] point source solution can be obtained from this equation.
Using numerical methods, the dimensionless well wall pressure and pres-

sure derivative can be obtained from (3.1) with different α and β. The
unsteady testing material is analyzed by using these results.

4 Conclusions

(1) The generalized unsteady seepage flow model which we obtained can be
changed into unsteady seepage flow control equations.
(2) There are three forms for the pressure distribution of seepage flow which
we obtained with different α and β. The analysis shows that these three forms
are steady state or approximately linear with longer dimensionless time.
(3) When α − β + 2 > 0, the solutions of the point source in real space are
obtained by using numerical methods. The pressure distribution of vertical
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crevice and level wells is obtained from these solutions. The unsteady testing
material of the oil well pressure is analyzed using these results.
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Domain Decomposition Preconditioners
for Non-selfconjugate Second Order

Elliptic Problems

Huaiyu Zhang Jiachang Sun

Abstract

A non-symmetric interface Schur complement arises from non- selfcon-
jugate second order elliptic problems with domain decomposition me-
thods. The usual numerical methods for solving it are GMRES, OR-
THOMIN, and BICGSTAB, but they take a large amount of compu-
ter time and memory. The authors find in this paper that the non-
symmetric Schur complement can in fact be changed into a symmetric
one by scaling. Then an efficient preconditioner can be provided by
which the preconditioned system can be solved iteratively by a mo-
dified PCG method. When the problem is imposed on a rectangular
region, the condition number is estimated and is nearly one. Numeri-
cal experiments are also presented. Non-selfconjugate problems arise
in mathematical modeling and numerical simulation of fluid flows and
transport in porous media.

KEYWORDS: non-selfconjugate, elliptic equation, domain decomposition,
Schur complement, preconditioner

1 Introduction

Consider the non-selfconjugate second order elliptic equation

− 4 u + ω · 5u = f in Ω, (1.1)

where Ω is an L-shaped region in R2; i.e., Ω = Ω(1) ∪ Ω(2), with (see Fig. 1)

Ω(1) = (0, a1) × (0, b1), Ω(2) = (a1, a2) × (0, b2).

The Dirichlet boundary condition is imposed

u = 0 on ∂Ω. (1.2)

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 409–418, 2000.
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We assume that we can construct the rectangular grids Ω̄(i)
h on the rectangles

Ω̄(i), i = 1, 2. With the common step h, we have

Ω̄(1)
h = {(nh, mh) : n = 0, . . . , N1, m = 0, . . . , M1, N1h = a1, M1h = b1},

Ω̄(2)
h = {(nh, mh) : n = N1, . . . , N1 + N2, m = 0, . . . , M2,

(N1 + N2)h = a2, M2h = b2}.

Let Ω̄h denote Ω̄h = Ω̄(1)
h ∪ Ω̄(2)

h . We decompose Ω̄h into two parts: Ω̄h =

Ω1

Ω2Γ

Figure 1: An L-shaped region.

Ωh ∪ ∂Ωh, where ∂Ωh is the set of the grid points belonging to the boundary
∂Ω of the region Ω. For the discretization of (1.1) and (1.2), we use either
finite difference methods or finite element methods. The stiffness matrix
associated with the individual subdomains may be written as

A(i) =




A
(i)
II A

(i)
IB

A
(i)
BI A

(i)
BB


 , i = 1, 2. (1.3)

Combining them into one we obtain the stiffness matrix

A =




A
(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

A
(1)
BI A

(2)
BI A

(1)
BB + A

(2)
BB




. (1.4)
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We now partition the vector of unknown coefficients in the same way as the
matrix: u = (u(1)

I , u
(2)
I , uB)T . The linear system can then be written as




A
(1)
II 0 0

0 A
(2)
II 0

A
(1)
BI A

(2)
BI I







I 0 A
(1)−1
II A

(1)
IB

0 I A
(2)−1
II A

(2)
IB

0 0 S(1) + S(2)







u
(1)
I

u
(2)
I

uB


 = f, (1.5)

where S(i) = A
(i)
BB − A

(i)
BIA

(i)−1
II A

(i)
IB is called the Schur completement and

each can be calculated independently. Perform a forward solver to obtain




I 0 A
(1)−1
II A

(1)
IB

0 I A
(2)−1
II A

(2)
IB

0 0 S(1) + S(2)







u
(1)
I

u
(2)
I

uB




=




I 0 0

0 I 0

−A
(1)
BI −A

(2)
BI I







A
(1)−1
II 0 0

0 A
(2)−1
II 0

0 0 I







f
(1)
I

f
(2)
I

fB


 .

(1.6)

Next, we must solve the reduced Schur complement problem

(S(1) + S(2))uB = fB − A
(1)
BIA

(1)−1
II f

(1)
I − A2

BIA
(2)−1
II f

(2)
I ≡ g. (1.7)

The solution of this equation gives us the values along the interior boundary
and the problem then splits into two independent subproblems. We can thus
back solve in parallel for the interior unknowns in each substructure:

u
(i)
I = A

(i)−1
II (f (i)

I − A
(i)
IBu

(i)
B ). (1.8)

This procedure can be generalized to the case of N subdomains. The
Schur complement arising from non-selfconjugate second order elliptic equa-
tions is non-symmetric. Its condition number grows like O(1/h). Since it is
denser than the original stiffness matrix, in general, the linear system (1.7) is
solved iteratively. The usual iterative methods for non-symmetric problems
are GMRES, ORTHOMIN, and BICGSTAB.

Several papers of Chan, et al. have been devoted to the construction
of preconditioners for this kind of non-symmetric Schur complement; see



412 Zhang and Sun

[2, 3]. These preconditioners are referred to as interface solvers or interface
preconditioners. The authors in this paper show that the non-symmetric
Schur complement can be changed into a symmetric one only through the
method of diagonal scaling. An efficient preconditioner is also provided, by
which the preconditioned system can then be solved iteratively by a modified
PCG method instead of those mentioned above.

2 Diagonal Scaling and Preconditioners

Suppose that the standard five-point central difference scheme is applied,
which has the form

−1 + 1
2ω2h

−1 − 1
2ω1h 4 −1 + 1

2ω1h

−1 − 1
2ω2h

Let Ti, i = 1, 2, be an Mi × Mi matrix having the form

T [i] =




4 −1 + 1
2ω2h

−1 − 1
2ω2h 4

. . .

. . . . . . −1 + 1
2ω2h

−1 − 1
2ω2h 4




.

The Schur complement then becomes

S = T [2] − (1 − 1
4
ω2

1h2)[I, 0]B[1]
N1

[
I
0

]
− (1 − 1

4
ω2

1h2)B[2]
N2

, (2.1)

where B
[i]
n has the recursive relations

B[i]
n = (T [i] − (1 − 1

4
ω2

1h2)B[i]
n−1)

−1, B
[i]
1 = T [i]−1, i = 1, 2. (2.2)

Let D be a uniformly bounded diagonal matrix with its elements given by

di =

(√
1 + 1

2ω2h

1 − 1
2ω2h

)i

.
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Let Ŝ = DSD−1. It can be easily seen that Ŝ becomes a symmetric matrix
so that the CG method can be used. Numerical experiments show that the
times of iteration by the CG method reduce largely.

Let
C2 = Kω2 +

1
4
K2

ω2
+

1
4
ω2

1h2I, (2.3)

where

Kω2 =




2 −1 + 1
2ω2h

−1 − 1
2ω2h 2

. . .

. . . . . . −1 + 1
2ω2h

−1 − 1
2ω2h 2




.

Also, let Ĉ = DCD−1. Now, instead of solving (1.7), we can solve any of the
two preconditioned systems by the PCG method

Ĉ−2Ŝ2vB = DC−2Sg, uB = D−1vB , (2.4a)

or
Ŝ2Ĉ−2vB = DSg, uB = C−2D−1vB . (2.4b)

For the PCG method, see Chapter 9 in [5]. Or, equivalently, we solve any of
the two by a modified PCG method

DC−2S2uB = DC−2Sg, (2.5a)

or
DS2C−2vB = DSg, uB = C−2vB . (2.5b)

MODIFIED PCG ALGORITHM:
1. Compute r0 := g − Su0

B , z0 := C−2Sr0, and p0 := z0

2. For j = 0, 1, . . ., until convergence Do:
3. αj := (Drj , zj)/(D2pj , S

2pj)
4. uj+1

B := uj
B + αjpj

5. rj+1 := rj − αjSpj

6. zj+1 := C−2Srj+1

7. βj := (Drj+1, zj+1)/(Drj , zj)
8. pj+1 := zj+1 + βjpj

9. EndDo
In the above algorithm, C2 is a tri-diagnoal matrix, so it is easy for C−2

to do the matrix-vector operations.
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3 The Condition Number

Define the Ŝ2-inner product by

(x, y)Ŝ2 = (Ŝ2x, y) = (Ŝx, Ŝy) = (x, Ŝ2y). (3.1)

For a linear operator L, which is self-adjoint with respect to the Ŝ2-inner pro-
duct, we use the Rayleigh quotient characterization of the extreme weighted
eigenvalues

λŜ2

min(L) = min
x6=0

(Lx, x)Ŝ2

(x, x)Ŝ2

, λŜ2

max(L) = max
x6=0

(Lx, x)Ŝ2

(x, x)Ŝ2

. (3.2)

Then the condition number of L is given by

κ(L) = λŜ2

max(L)/λŜ2

min(L). (3.3)

Lemma 3.1 It holds that κ(Ĉ−2Ŝ2) = max
x6=0

(Ŝ2x, x)
(Ĉ2x, x)

/ min
x6=0

(Ŝ2x, x)
(Ĉ2x, x)

.

When the problem is imposed on a rectangular region, i.e., b1=b2, we show
that the condition number of the preconditioned Schur complement is nearly
one. From the numerical experiments, it seems still true for the L-shaped
regions.

Theorem 3.1 Assume that a = min(a1, a2 − a1) ≥ 1 and πh ≤ 1/3. Then
the condition number of the preconditioned Schur complement is bounded by

κ(Ĉ−2Ŝ2) ≤ (1 + e−2πa)2.

Proof: When a rectangular region is imposed, let Bn have the recursive
relation

Bn = (T − (1 − 1
4
ω2

1h2)Bn−1)−1, B1 = T−1,

where T = T [1] = T [2]. Then the Schur complement S has the form

S = T − (1 − 1
4
ω2

1h2)(BN1 + BN2).

Under this case, Ŝ2 and Ĉ2 have the same eigenvectors

Ŝ2 = (D Q)Λ2
S(D Q)−1, ΛS = Diag{λj},

Ĉ2 = (D Q)Λ2
C(D Q)−1, ΛC = Diag{µj},



Domain Decomposition Preconditioners 415

where λi and µi are the eigenvalues of S and C, respectively. It yields that

κ(Ĉ−2Ŝ2) = max(
λj

µj
)2/ min(

λj

µj
)2.

Let

αj = ch−1


 tj

2
√

1 − 1
4ω2

1h2


 > 0, tj = 4 − 2

√
1 − 1

4
ω2

2h2 cos jπh.

We see from the corresponding recursive relations of eigenvalues that

λj =

√
1 − 1

4
ω2

1h2(
ch(N1 + 1)αj

sh(N1 + 1)αj
+

ch(N2 + 1)αj

sh(N2 + 1)αj
)shαj ,

µj = 2
√

1 − 1
4ω2

1h2shαj .

Therefore, we have

λj

µj
=

1
2
(
ch(N1 + 1)αj

sh(N1 + 1)αj
+

ch(N2 + 1)αj

sh(N2 + 1)αj
)

= 1 +
e−2(N1+1)αj

1 − e−2(N1+1)αj
+

e−2(N2+1)αj

1 − e−2(N2+1)αj
> 1.

When πh ≤ 1/3, it follows that

e−αj ≤ t1

2
√

1 − 1
4ω2

1h2
−
√√√√(

t1

2
√

1 − 1
4ω2

1h2
)2 − 1

≤ 2 − cos πh −√(2 − cos πh)2 − 1 ≤ 1 − 2πh.

Therefore, we obtain
λj

µj
≤ 1 + e−2πa.

This completes the proof. []

4 Numerical Experiments

Let

K =




2 −1

−1 2
. . .

. . . . . . −1
−1 2


 .
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and

Ĉ2
1 = K +

1
4
K2, Ĉ2

2 = D(Kω2 +
1
4
K2

ω2
)D−1,

Ĉ2
3 = K +

1
4
K2 +

1
4
ω2

1h2, Ĉ2
4 = Kω2 +

1
4
K2

ω2
+

1
4
ω2

1h2.

The following numerical experiments are done using Matlab, where the pa-
rameter ω is given in the table and h=1/N1.

ω κ(S) κ(Ĉ−2
1 Ŝ2) κ(Ĉ−2

2 Ŝ2) κ(Ĉ−2
3 Ŝ2) κ(Ĉ−2

4 Ŝ2)

(5,5) 19.87208 1.50997 1.20197 1.20464 1.00002

(10,5) 16.04520 2.26958 1.80664 1.12779 1.000001

(5,10) 17.97331 2.28940 1.12501 1.82647 1.000001

Table 1. N1 = N2 = 40, M1 = M2 = 25.

ω κ(S) κ(Ĉ−2
1 Ŝ2) κ(Ĉ−2

2 Ŝ2) κ(Ĉ−2
3 Ŝ2) κ(Ĉ−2

4 Ŝ2)

(30,30) 7.04838 2.06521 1.81486 2.06983 1.000000

(40,20) 5.64662 21.28800 4.01108 1.27035 1.000000

(20,40) 8.66044 25.70777 1.19912 5.11383 1.000000

Table 2. N1 = N2 = 40, M1 = M2 = 25.

ω κ(S) κ(Ĉ−2
1 Ŝ2) κ(Ĉ−2

2 Ŝ2) κ(Ĉ−2
3 Ŝ2) κ(Ĉ−2

4 Ŝ2)

(5,5) 17.25141 1.44270 1.27717 1.27788 1.18549

(10,5) 14.50527 1.90157 1.64653 1.21589 1.14762

(5,10) 15.79645 1.91053 1.21513 1.65534 1.14760

Table 3. N1 = N2 = 40, M1 = 25, M2 = 20.
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ω κ(S) κ(Ĉ−2
1 Ŝ2) κ(Ĉ−2

2 Ŝ2) κ(Ĉ−2
3 Ŝ2) κ(Ĉ−2

4 Ŝ2)

(30,30) 6.79150 13.80025 1.77435 2.01674 1.03194

(40,20) 5.54002 14.20308 3.72434 1.26206 1.02831

(20,40) 8.07529 17.10853 1.19631 4.72469 1.02811

Table 4. N1 = N2 = 40, M1 = 25, M2 = 20.

ω κ(S) κ(Ĉ−2
1 Ŝ2) κ(Ĉ−2

2 Ŝ2) κ(Ĉ−2
3 Ŝ2) κ(Ĉ−2

4 Ŝ2)

(5,5) 9.73994 1.18636 1.16951 1.16972 1.16500

(10,5) 9.10944 1.25928 1.21972 1.14636 1.13931

(5,10) 9.37308 1.26280 1.14621 1.22346 1.13936

Table 5. N1 = N2 = 40, M1 = 30, M2 = 10.

ω κ(S) κ(Ĉ−2
1 Ŝ2) κ(Ĉ−2

2 Ŝ2) κ(Ĉ−2
3 Ŝ2) κ(Ĉ−2

4 Ŝ2)

(30,30) 5.60318 4.47593 1.55878 1.73865 1.03195

(40,20) 4.90427 4.56155 2.56449 1.21294 1.02832

(20,40) 6.08107 5.40245 1.15975 3.16567 1.02812

Table 6. N1 = N2 = 40, M1 = 30, M2 = 10.
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Performance of MOL for Surface Motion
Driven by a Laplacian of Curvature

Wen Zhang Ian Gladwell

Abstract

We analyze the performance of the method of lines when solving
a partial differential equation system describing microstructural evolu-
tion in a sintering process. The system involves a fourth order nonlinear
partial differential equation with a moving boundary. Both sequential
and parallel ordinary differential equation solvers are applied.

KEYWORDS: method of lines, parallel ODE solver, partial differential equa-
tions, sintering, surface diffusion, motion by curvature, moving boundary

1 Introduction

We discuss and analyze the performance of the method of lines (MOL) when
solving a system of partial differential equations (PDEs) describing micro-
structural evolution in a sintering process. Sintering is a material manu-
facture process where powdered material is densified to form a solid body.
From a microstructural perspective, the sintering process can be viewed as the
combination of two diffusion processes: surface and grain boundary diffusion.
The mathematical model for surface diffusion is a fourth order nonlinear PDE
and for grain boundary diffusion is a second order linear PDE coupled with
an integral equation. The two models join at the moving boundary and con-
stitute a closed mathematical system governing the movement of the particle
surfaces during sintering; detailed descriptions can be found in [17, 18, 19].

Here, we focus our attention on the surface diffusion model. The charac-
teristic feature of surface diffusion is that the mass flow is restricted along the
surface. Following the theory of Herring [7, 11, 13], mass flow is generated
by the surface gradient of the chemical potential, which is proportional to
the surface curvature. Hence, locally the motion is driven by a surface La-
placian of the curvature. This motion is nonlinear and complex. There are
limited analytical studies [9, 10]. Particularly, Elliott and Garche [10] prove

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 419–429, 2000.
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existence of a solution under certain conditions. We have used MOL suc-
cessfully to solve the system [16, 17, 19] employing the ordinary differential
equation (ODE) solvers LSODE [12, 14] and DASSL [15]. Here, we explore
the use of a new generation of ODE solvers, both sequential and parallel, and
compare them for convergence of the solution of the PDE.

We use four ODE solvers, the sequential solvers VODE [4] and VODPK
[3, 5], and the parallel solvers PVODE [6] and the version of PVODE in
PETSc [1, 2]. VODE was developed from LSODE. VODPK is identical to
VODE except for the linear solver. VODE uses a direct method as in DASSL
and LSODE, while VODPK uses an iterative method; i.e., a scaled, pre-
conditioned, incomplete generalized minimum residual method (SPIGMR).
PVODE is a parallel solver based on VODPK and its modularized C version
CVODE [8]. It is built upon the Message Passing Interface (MPI) library
and is intended for a single program multiple data environment on distri-
buted memory computers. PETSc is a parallel computation library that
includes linear and nonlinear equation solvers, unconstrained minimization
modules and ODE solvers. It is also built upon MPI and includes PVODE
(with some modifications) as one of its ODE solvers. For simplicity, we shall
use the notation PETSc to represent the PETSc/PVODE solver.

An advantage of using MOL to solve PDEs is the stability of the numerical
solution achieved from employing the dynamically chosen time steps and
formulas of the integration. Here, stability has two meanings. One is stability
of the solution as time proceeds. The other is stability of the solution as the
spatial step size decreases. The latter is a virtue of the MOL approach. With
a reliable ODE solver, MOL can guarantee error control on the solution for
any sufficiently small integration error tolerance and all small spatial step
sizes. That is, once we decide on a spatial discretization scheme and choose
a sufficiently small integration error tolerance, the error in the solution will
not grow as we refine the spatial mesh.

2 The Mathematical Model

To evaluate the performance of MOL, we consider 2D sintering; 3D cases are
discussed in [17, 18]. Since we are concerned with only the surface profile,
this yields a computational 1D problem. Consider a periodic 2D particle
string shown in Fig. 1 with the x-axis as a line of symmetry and vertical
grain boundaries.
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Figure 1. Periodic 2D particle string.

The surface is represented by function y(t, x) with t being the time va-
riable and x the spatial variable. For this system, the dimensionless surface
diffusion equation is

∂y

∂t
= −∂J

∂x
,

with surface flux

J = −
[
1 +

(
∂y

∂x

)2
]−1/2

∂K

∂x

and surface curvature

K = −∂2y

∂x2

[
1 +

(
∂y

∂x

)2
]−3/2

.

Exploiting symmetry, we need compute only that part of the surface pro-
file between a grain boundary and the central vertical line of a particle. By
placing the origin at the center of a particle, we have symmetric boundary
conditions (BCs) at x = 0:

yx = 0, yxxx = 0

At the other boundary, x = xGB(t), we impose the BCs of a fixed dihedral
angle, grain boundary flux and material plating rate:

yx = − cot(
A

2
),

J = −JGB
2

= − 3Γ
2y2(t, xGB)

(
sin

A

2
−K(t, xGB)y(t, xGB)

)
,

x′
GB(t) = − JGB

2y(t, xGB)
,

where A is the dihedral angle, JGB is the grain boundary flux at x = xGB(t)
and Γ is the ratio of grain boundary to surface diffusion. All variables are
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dimensionless. Their relation to the physical units is shown in [19]. When
JGB 6= 0, we have a moving boundary problem.

3 The Computational Model

We select a mass conserving finite volume scheme for spatial discretization
of Eqn. (1). In this scheme we use second order central differences for all
derivatives except near the triple point, x = xGB , where we use one-sided
second order differences. It can be shown that the spatial discretization error
is of second order for solutions in C6.

Since the moving boundary is unidirectional in our model, we select a
front tracking method which maps our coordinates to the moving boundary.
Hence our computational grids are fixed but our physical grids move with
the moving boundary. In 1D this simply implies scaling. Throughout, we use
uniform meshes in space with N equally spaced mesh points and a step size
h = 1/(N − 1). We let yn = y(t, sn) where sn is a mesh point of the scaled
spatial variable s = x/xGB . After discretization, the PDE system becomes
the ODE system

ynt = −Jn+1/2 − Jn−1/2

hxGB
+
yn+1 − yn−1

2hxGB
snx

′
GB ,

Jn+1/2 = −1
2




[
1 +

(
yn+1 − yn−1

2hxGB

)2
]−1/2

+

[
1 +

(
yn+2 − yn

2hxGB

)2
]−1/2



Kn+1 −Kn

hxGB
,

Kn = −yn+1 − 2yn + yn−1

h2x2
GB

[
1 +

(
yn+1 − yn−1

2hxGB

)2
]−3/2

,

x′
GB(t) = − 3Γ

2y3
N

(
sin

A

2
−KNyN )

)
,

yNt = −3JN − 4JN−1/2 + (JN−1/2 + JN−3/2)/2
hxGB

+ yxx
′
GB ,

JN−1/2 = −1
2




[
1 +

(
yn+1 − yn−1

2hxGB

)2
]−1/2

+ (1 + y2
x)

−1/2




×
{
Kn+1 −Kn

hxGB

}
,

for n = 1, 2, . . . , N − 1 with y0 = y2, y−1 = y3. The Jacobian of this ODE
system typically has the structure shown in Fig. 2. It has band width 5
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Figure 2. The two band structure of the Jacobian.

everywhere except near the right end where it has three full columns. Also,
the lower band width increased by 1 due to using one-sided differences. This
structure often occurs in moving boundary problems and can be exploited
computationally by a combination of algorithms for banded and full matrices.

4 Computational Performance and Analysis

To be thorough, we have selected a wide range of integration error tolerances,
tol, and numbers of spatial mesh points, N . The range of tolerances used is
tol = 10−4 to tol = 10−12 and N ranges from 33 to 1025. As an ‘analytical’
solution, we use the numerically proved ‘exact’ solution obtained with the
finest spatial mesh, N = 1025, and the most stringent tolerance, tol = 10−12.
We fix the physical parameters in the sintering model at physically realistic
values: the dihedral angle A = 160◦ and the ratio of grain boundary to surface
diffusion Γ = 0.1. To better illustrate the error behavior, we use an initial
sinusoidal surface with maximum height 1 and initial grain boundary of height
0.156. Our computation reaches the equilibrium state stably. Fig. 3 shows
the initial and final surface profile. To compare errors, we stop the integration
at a fixed time, t = 1, before equilibrium is reached. Then, the height of the
entire surface lies between 0.85 and 1 so the absolute and relative errors in
the solution are almost equivalent. For simplicity, we measure absolute error
and use the scaled variable s instead of x.
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We use the backward differentiation formula (BDF) option in the ODE
solvers. Fig. 4 shows the errors as the spatial step size decreased by halving.
The errors behave almost uniformly on the surface and converge to zero as
the spatial step size approaches zero. The calculated orders of convergence at
the midpoint in s in Fig. 4 are shown in Table 1. We observe the anticipated
second order convergence for a sufficiently large number of mesh points. In
VODE, we implement the full exact Jacobian matrix. In VODPK, we use the
full dimension of Krylov subspace and no preconditioning. In PVODE, we use
the built-in block diagonal with banded block preconditioner (PVBBDPRE).
In PETSc, we use the full dimension of Krylov subspace and 5×10−8 for the
ratio of tolerances of the linear to the nonlinear solver. The four ODE solvers,
VODE, VODPK, PVODE, PETSc produce essentially the same results. For
a less stringent integration error tolerance, tol = 10−4, we no longer observe
second order convergence as the number of spatial mesh points increases, see
Figs. 5(a)-(c). This is due to the integration error dominating the spatial
discretization error. Note, from Figs. 5, the errors are bounded as the number
of mesh points increases, demonstrating that stability is preserved by the
MOL approach, due to the high quality of the ODE solvers.
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Figure 3: Profiles. Figure 4: Errors.

We also observed that error growth can be induced by poor approxima-
tions to the Jacobian, and by errors from the linear and nonlinear solvers.
The iterative linear system solvers in PVODE and PETSc can perform as
accurately as the direct linear solver in VODE with an appropriate tolerance
in the linear solver, Krylov subspace dimension and preconditioner. Without
properly adjusted parameters, the iterative solver can produce poor results
and MOL can loose stability as the spatial mesh size decreases. Fig. 6 shows
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results when using the default parameters in the linear solver in PETSc; i.e.,
the linear to nonlinear iteration convergence factor is 0.05 and the Krylov
subspace dimension is 5. The errors grow significantly as N increases and
eventually stability is lost. Fig. 7 shows corresponding results when we use
the banded Jacobian approximation with band width 5 in VODE; hence cut-
ting out the moving boundary information in the Jacobian. Again, observe
the growth of the errors and the instability induced as the number of mesh
points increases. In these cases, MOL behaves like a finite difference method
where the constraint for stability is a simple relation between the time and
spatial step sizes. The instability can be suppressed by decreasing tol. Ho-
wever, our tests show that this is less efficient than using properly adjusted
parameters and an appropriate Jacobian approximation.

1e-07

1e-06

1e-05

0.0001

0.001

0 0.2 0.4 0.6 0.8 1

E
rr

o
r

S

Results using VODE with Tolerance=1d-4

mesh 33
mesh 65

mesh 129
mesh 257
mesh 513

1e-07

1e-06

1e-05

0.0001

0.001

0 0.2 0.4 0.6 0.8 1

E
rr

o
r

S

Results using PVODE with Tolerance=1d-4

mesh 33
mesh 65

mesh 129
mesh 257
mesh 513

Figure 5a: Errors with VODE. Figure 5b: Errors with PVODE.
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Mesh 33 65 129
Order 1.53 1.82 1.98

Table 1: Convergence rate with spatial mesh size

Band Width 5 7 9 11 13 65 full
Computing Time 1302 9.261 9.578 12.80 12.94 22.18 29.16

Table 2: Computing time in seconds for varying band width; 257 spatial mesh
points; integration error tolerance 10−12.

Although the Jacobian is not banded, it can be well-approximated by
a banded matrix with an appropriate band width. We use a Jacobian ap-
proximation with band width 7 instead of the band width 5 which actually
applies in most parts of the Jacobian. The numerical results from VODE,
see Fig. 8, show that the errors and instability are completely under the
control. The results here are as good as in Fig. 5a where the exact full Ja-
cobian is used. Using this banded approximation significantly reduces both
the computing time and the coding effort for the Jacobian. (In our tests, we
modified VODE slightly in the way it forms the approximated Jacobian to
achieve better results.) Further increases in the band width gave no signi-
ficant improvement, whereas reducing the band width led to growth in the
error and to instability. We also tested using different band widths in the
preconditioner PVBBDPRE employed in PVODE, see Table 2. The results
are similar to those when using VODE. Table 2 presents results for equal
upper and lower half band width.

The excessive computing time for band width 5 indicates that the ap-
proximation for the Jacobian is too poor, so instability occurs, and time is
wasted integrating through the instability. For band widths greater than 5,
the computing time dramatically decreases and there is no instability. The
most efficient band widths are 7 and 9, just above the critical band width
5. The critical band width case can be analyzed by studying the eigenvalues
of the Jacobian. A good approximation to the Jacobian should have eigen-
values close to those of the exact Jacobian. Since our problem is nonlinear
we computed the eigenvalues of the Jacobian and its banded approximations
at a fixed time in the integration. Table 3 shows the largest 4 eigenvalues
computed at the same time as when we compare the errors in the solution.
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Band Width 1 3 5 7 9 exact
Eigenvalue 1 1.8 1.7+6 -5.7-2 1.1 1.0 -0.21+i0.19
Eigenvalue 2 -4.9+6 1.6+6 -2.6+1 -1.7-1 -2.0-1 -0.21-i0.19
Eigenvalue 3 -4.9+6 1.5+6 -7.8+2 -8.0+1 -8.1+1 -8.3+1
Eigenvalue 4 -5.0+6 1.3+6 -4.8+3 -1.2+3 -1.2+3 -1.2+3

Table 3: Largest 4 eigenvalues for the approximation to the Jacobian, band widths
1, 3, 5, 7, 9 and the exact Jacobian.

When the band width is less than 7, these eigenvalues are far from those of
the exact Jacobian. They change significantly with increasing band width.
For band width 7, there is a significant improvement in the accuracy of the
eigenvalues. The largest two eigenvalues correspond to a split of the only pair
of complex eigenvalues of the exact Jacobian. The remaining eigenvalues are
within three correct digits of those of the exact Jacobian. As the band width
increases further, the eigenvalues do not change significantly. Hence, by choo-
sing the smallest band width above the critical value we are able to achieve
most efficiency when using the ODE solvers.
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Figure 7: Errors with VODE-band 5. Figure 8: Errors with VODE-band 7.

5 Conclusions

We have shown that when solving surface diffusion problems with a moving
boundary using MOL and quality ODE solvers, for stability and accuracy it
is essential to use sufficiently stringent integration tolerances and sufficiently
accurate approximations to the Jacobian. The Jacobian resulting from MOL
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typically has a structure of a diagonal band and a vertical band for our
problem. It can be well approximated by a banded matrix with a sufficiently
wide band width. Also, the block diagonal preconditioner performs well with
the iterative linear solver.
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A High-Order Upwind Method
for Convection-Diffusion Equations

with the Newmann Boundary Condition

Weidong Zhao

Abstract
In this paper a high-order upwind finite difference method is stu-

died for steady convection-diffusion problems with the Newmann bo-
undary condition. Based on these equations in the conservation form, a
conservative high-order upwind finite difference scheme on nonuniform
rectangular partition is proposed. The scheme satisfies the maximum
value principle and has a second-order error estimate in the discrete
H1 norm. The method and its analysis apply to groundwater pollution
and reservoir simulation problems.

KEYWORDS: convection-diffusion, high-order upwind method, error esti-
mate

1 Introduction

Consider the 2D, steady, linear convection-diffusion problem

−∇ · (A∇u) + ∇ · (~bu) + cu = f, x ∈ Ω,

(A∇u) · ~n = 0 x ∈ Γ = ∂Ω,
(1.1)

where u = u(x, y) is the transport quantity, A = diag(a1(x, y), a2(x, y)) is the
diffusion coefficient matrix, ~b = (b1(x, y), b2(x, y))T is the transport velocity,
c = c(x, y) and f = f(x, y) are known functions, Ω is a bounded region in
R2, ∂Ω is the boundary of Ω, and ~n is the normal exterior unit vector to ∂Ω.

Many realistic fluid flow procedures, such as groundwater pollution and
reservoir simulation problems, can be described in the form of convection-
diffusion equations [1, 2] and these equations are often convection-dominated.
It is very difficult to simulate this kind of problems numerically. The ordi-
nary finite difference and finite element methods, which have been widely
used in numerical simulation of the nonconvection-dominated problems, in-
troduce nonphysical oscillations. To overcome nonphysical oscillations, over
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c© Springer-Verlag Berlin Heidelberg 2000
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the past three decades, the upwind schemes have been extensively studied
and widely used in the numerical simulation of this kind of problems (e.g.,
see [3–10]). The standard upwind methods avoid the numerical oscillation,
but they only have first-order accuracy. To improve the accuracy of up-
wind methods, many upwind schemes have been proposed by modifying the
second-order differential terms to obtain the second-order accuracy. But some
of them do not preserve the maximum value principle and others do not pre-
serve the conservation property. To establish a high-order method which is
in the conservation form and preserves the maximum value principle, for 1D
problems it has been extensively studied, but many such methods are not
as efficient for high dimensional problems as for 1D problems. Thus it is
very important and interesting to consider the multi-dimensional high-order
upwind methods, which are in the conservation form, satisfy the maximum
value principle, and have a high efficiency of applications.

In this paper we study a high-order upwind method for (1.1). In [7], a
modified high-order upwind method on uniform rectangular grids has been
proposed and analyzed and its theoretical results can only be obtained for
uniform partitions. With a new technique of modifying the convective and
diffusion terms and the domain partition, a new kind modified upwind fi-
nite difference method on nonuniform rectangular partitions is proposed and
analyzed in this paper. The proposed scheme is in the conservation form,
satisfies the maximum value principle, and has a second-order error estimate
in the discrete H1 norm.

The paper is organized as follows. The modified high-order upwind fi-
nite difference scheme for (1.1) is given in §2 and its theoretical analysis is
expanded in §3. Some conclusions are given in §4.

2 High-Order Upwind Scheme

In this section, we consider a high-order upwind finite difference method for
multi-dimensional problems. For simplicity, only 2D problem is considered.
The results obtained are also true for multidimensional problems.

2.1 Discretization and Notation

Let 0 = x0 < x1 < . . . < xN < xN+1 = 1 and 0 = y0 < y1 < . . . <

yM < yM+1 = 1 be a partition of Ω = [0, 1] × [0, 1] in x and y directions,
respectively. The partition is denoted as Ih with grid points (i, j), 0 ≤ i ≤ N ,



432 Zhao

and 0 ≤ j ≤ M , where (i, j) represents (xi, yj). For a continuous function
f(x, y), fij means f(xi, yj). Let xi+1/2 = xi + xi+1/2, yj+1/2 = yj + yj+1/2
for i = 1, 2, . . . , N − 1, j = 1, 2, . . . , M − 1, with x1/2 = y1/2 = 0, xN+1/2 =
yM+1/2 = 1, hxi = xi+1/2 − xi−1/2 for i = 1, 2, . . . , N , hyj = yj+1/2 − yj−1/2

for j = 1, 2, . . . , M , hxi+1/2 = xi+1 − xi for i = 1, 2, . . . , N − 1, hyj+1/2 =
yj+1 − yj for j = 1, 2, . . . , M − 1, hx = max

i=1,N+1
hxi , hy = max

j=1,M+1
hyj , and

I∗
ij = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2]. Let I∗

h denote the dual partition of
Ω with Ih. The nodes of I∗

h are (xi+1/2, yj+1/2) for i = 0, 1, . . . , N , j =
0, 1, . . . , M .

Now, define Vh as a piecewise constant function space on I∗
h; i.e., Vh =

{v, v|I∗
ij

= vij , i = 0, 1, . . . , N, j = 0, 1, . . . , M}. Define the discrete H1 and
L2 norms for Vh as

|u|2a∗ =
N∑
i=1

M∑
j=1

[a∗
1i−1/2,j

(uij−ui−1,j)2

hx
i−1/2

hyj + a∗
2i,j−1/2(

(uij−ui,j−1)2

hy

j−1/2
)hxi ],

|u|2bh =
N∑
i=1

M∑
j=1

[b1i−1/2,j(uij − ui−1,j)2h
y
j + b2i,j−1/2(uij − ui,j−1)2hxi ],

‖u‖2 =
N∑
i=1

M∑
j=1

u2
ijh

x
i h

y
j , ‖u‖2

c∗ =
N∑
i=1

M∑
j=1

c∗
iju

2
ijh

x
i h

y
j .

2.2 A High-Order Upwind Scheme

To construct a high-order upwind scheme for (1.1), we first outline the method
for a 1D convection-diffusion equation. The 1D convection-diffusion equation
is

− d

dx
(a

du

dx
) +

d

dx
(bu) + cu = f, x ∈ Ω,

du

dx
|x=0 =

du

dx
|x=1 = 0,

(2.1)

where u = u(x) is the transport quantity, a = a(x) > 0 is the diffusion
coefficient, b = b(x) is the transport velocity satisfying b(0) = b(1) = 0, and
c = c(x) and f = f(x) are known functions.

Let 0 = x0 < x1 < . . . < xN < xN+1 = 1 be the partition of Ω = [0, 1].
The partition is denoted as Ih. Let xi+1/2 = xi + xi+1/2 for i = 1, 2, . . . , N −
1, with x1/2 = 0, xN+1/2 = 1, hi = xi+1/2 − xi−1/2 for i = 1, 2, . . . , N , and
hi+1/2 = xi+1 − xi for i = 1, 2, . . . , N − 1.

Integrate (2.1) over [xi−1/2, xi+1/2] and use Green’s formula to get

−[ai+1/2u
′
i+1/2 − ai−1/2u

′
i−1/2] + [bi+1/2ui+1/2 − bi−1/2ui−1/2]

+
∫
I∗

i
cudxdy =

∫
I∗

i
fdxdy,

(2.2)



A High-Order Upwind Method for Convection-Diffusion Equations 433

for i = 1, 2, . . . , N . In (2.2), the central difference method may be used to
approximate the term u′

i+1/2, but ui+1/2 in bi+1/2ui+1/2 must be handled
carefully in order that a nonphysical numerical oscillation does not occur.
To do this, a special technique should be used. Here we approximate the

convective term bi+1/2ui+1/2 as follows. Define H(x) =
{

1, x ≥ 0
0, x < 0 . From

the equality,

bi+1/2ui+1/2 = bi+1/2[H(bi+1/2)ui+1/2 + (1 − H(bi+1/2))ui+1/2], (2.3)

we know that H(bi+1/2)ui+1/2 and (1 − H(bi+1/2))ui+1/2 are related to the
positive and negative transport velocities, respectively. Thus H(bi+1/2)ui+1/2

and (1 − H(bi+1/2))ui+1/2 must be approximated differently. From Taylor’s
formula, ui+1/2 has the two expressions

ui+1/2 = ui +
hi+1/2

2
u′
i+1/2 −

h2
i+1/2

8
u”i+1/2 + O(h3

i+1/2), (2.4)

ui+1/2 = ui+1 − hi+1/2

2
u′
i+1/2 −

h2
i+1/2

8
u”i+1/2 + O(h3

i+1/2). (2.5)

From the nature of transport and the upwind idea, (2.4) and (2.5) should be
used in H(bi+1/2)ui+1/2 and (1 − H(bi+1/2))ui+1/2, respectively. The term
ui−1/2 can be handled similarly. Then (2.2) can be written as

−[(ai+1/2 − |bi+1/2|hi+1/2

2 )u′
i+1/2 − (ai−1/2 − |bi−1/2|hi−1/2

2 )u′
i−1/2]

+bi+1/2[H(bi+1/2)ui + (1 − H(bi+1/2))ui+1] − bi−1/2[H(bi−1/2)ui−1

+(1 − H(bi−1/2))ui] − [
bi+1/2h

2
i+1/2

8 u”i+1/2 − bi−1/2h
2
i−1/2

8 u”i−1/2]

+
∫
I∗

i
cudx + O(h3

i−1/2 + h3
i+1/2) =

∫
I∗

i
fdx.

(2.6)
Based on (2.6), a modified high-order upwind finite difference scheme for
(2.1) can be proposed as

−∇x̃(a∗∇x̄U)i + ∇x̃(bUux)i + ciUi = fi, (2.7)
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for i = 1, . . . , N , where

∇x̃(a∗∇x̄U)i =
1
hi

(a∗
i+1/2

Ui+1 − Ui
hi+1/2

− a∗
i−1/2

Ui − Ui−1

hi−1/2
),

a∗
i+1/2 =

2a2
i+1/2

2ai+1/2 + |bi+1/2|hi+1/2
,

∇x̃(bUux)i =
1
hi

(bi+1/2U
ux
i+1/2 − bi−1/2U

ux
i−1/2),

Uux
i+1/2 = H(bi+1/2)Ui + (1 − H(bi+1/2))Ui+1,

ci = 1
hi

∫
I∗

i
cdx, fi = 1

hi

∫
I∗

i
fdx,

with a1/2 = aN+1/2 = b1/2 = bN+1/2 = 0.

Using the idea of getting the scheme (2.7), we construct the high-order
upwind scheme for (1.1) as follows:

−∇x̃(a∗
1∇x̄U)ij − ∇ỹ(a∗

2∇ȳU)ij
+∇x̃(b1U

ux) + ∇ỹ(b2U
uy)ij + cijUij = fij ,

(2.8)

for i = 1, . . . , N, j = 1, . . . , M , with a1/2,j = aN+1/2,j = ai,1/2 = ai,M+1/2 =
0, b1/2,j = bN+1/2,j = bi,1/2 = bi,M+1/2 = 0, where

∇x̃(a∗
1∇x̄U)ij =

1
hi

(a∗
1i+1/2,j

Ui+1,j − Uij
hxi+1/2

− a∗
1i−1/2,j

Uij − Ui−1,j

hxi−1/2
),

∇ỹ(a∗
2∇ȳU)ij =

1
hyj

(a∗
2i,j+1/2

Ui,j+1 − Uij
hyj+1/2

− a∗
1i,j−1/2

Uij − Ui,j−1

hyj−1/2
),

a∗
1i+1/2,j =

2a2
1i+1/2,j

2a1i+1/2,j + |b1i+1/2,j |hxi+1/2
,

a∗
2i,j+1/2 =

2a2
2i,j+1/2

2a2i,j+1/2 + |b2i,j+1/2|hyj+1/2
,

∇x̃(b1U
ux)ij =

1
hxi

(b1i+1/2,jU
ux
i+1/2,j − b1i−1/2,jU

ux
i−1/2,j),

Uux
i+1/2,j = H(b1i+1/2,j)Uij + (1 − H(b1i+1/2,j))Ui+1,j ,

∇ỹ(b2U
uy)ij =

1
hyj

(b2i,j+1/2U
uy
i,j+1/2 − b2i,j−1/2U

uy
i,j−1/2),

Uuy
i,j+1/2 = H(b2i,j+1/2)Uij + (1 − H(b2i,j+1/2))Ui,j+1.

3 Theoretical Analysis

In this section, we prove that scheme (2.8) satisfies the maximum value prin-
ciple and obtain its error estimate.
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3.1 The Maximum Value Principle

It is well known that (1.1) satisfies the maximum value principle if

div(~b) + c > 0, (x, y) ∈ Ω. (3.1)

Thus, for (2.8), we assume that

b1i+1/2,j − b1i−1/2,j

hxi
+

b2i,j+1/2 − b2i,j−1/2

hyj
+ cij > 0 (3.2)

holds for i = 1, 2 . . . , N and j = 1, 2 . . . , M .

Theorem 3.1 Scheme (2.8) is conservative and under condition (3.2), it
satisfies the maximum value principle.

Proof: From the definition of (2.8), it is easy to verify that it is conservative.
To prove the maximum value principle, we write (2.8) in the equivalent form

AijUi−1,j + BijUi+1,j + CijUij + DijUi,j−1 + EijUi,j+1 = Fij

i = 1, . . . , N, j = 1, . . . , M,
(3.3)

where

Aij = [−a∗
1i−1/2,j

hx
i−1/2

− b1i−1/2,jH(b1i−1/2,j)]h
y
j ,

Bij = [−a∗
1i+1/2,j

hx
i+1/2

+ b1i+1/2,j(1 − H(b1i+1/2,j))]h
y
j ,

Dij = [−a∗
2i,j−1/2

hy

j−1/2
− b2i,j−1/2H(b2i,j−1/2)]hxi ,

Eij = −[
a∗
2i,j+1/2

hy

j+1/2
+ b2i,j+1/2(1 − H(b2i,j+1/2))]hxi ,

Cij = [
a∗
1i+1/2,j

hx
i+1/2

+
a∗
1i−1/2,j

hx
i+1/2

]hyj + [
a∗
2i,j+1/2

hy

j+1/2
+

a∗
2i,j−1/2

hy

j−1/2
]hxi

+[b1i+1/2,jH(b1i+1/2,j) − b1i−1/2,j(1 − H(b1i−1/2,j))]h
y
j

+[b2i,j+1/2H(b2i,j+1/2) − b2i,j−1/2(1 − H(b2i,j−1/2))]hxi + cijh
x
i h

y
j ,

Fij = fijh
x
i h

y
j .

Further,

Aij + Bij + Cij + Dij + Eij

[b1i+1/2,j − b1i−1/2,j ]h
y
j + [b2i,j+1/2 − b2i,j−1/2]hxi + cijh

x
i h

y
j .

From (3.3) and the definition of H(x), it is easy to verify that Aij , Bij ,
Dij and Eij are nonpositive and Cij is nonnegative. Under condition (3.2),
Aij + Bij + Cij + Dij + Eij is positive too. Thus it satisfies the maximum
value principle. []
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3.2 Error Estimate

As we know, (1.1) is regular and uniquely solvable in H2 if 0.5div~b + c > 0.
Thus, for (2.8), we also assume that

c∗
ij = cij +

1
2
(
b1i+1/2,j − b1i−1/2,j

hxi
) +

b2i,j+1/2 − b2i,j−1/2

hyj
) ≥ c0 > 0 (3.4)

holds for i = 1, 2, . . . , N and j = 1, 2, . . . , M . For the sake of error estimates,
we assume that

a1 ≥ a10, a2 ≥ a20, (3.5)

for two positive constants a10 and a20.

Let uij be the solution of (1.1) at the point (xi, yj). Then uij satisfies the
equality

[−(∇x̃(a∗
1∇x̄u)ij − (∇ỹ(a∗

2∇ȳu)ij

+∇x̃(buux)ij + ∇ỹ(buuy)ij + cijuij)]hxi h
y
j =

11∑
l=1

Al
ij ,

(3.6)

where

A1
ij = −[a1i+1/2,j

∂u

∂x
|i+1/2,j − a1i−1/2,j

∂u

∂x
|i−1/2,j ]h

y
j ,

A2
ij = −[a2i,j+1/2

∂u

∂y
|i,j+1/2 − a2i,j−1/2

∂u

∂y
|i,j−1/2]hxi ,

A3
ij = [(a1i+1/2,j −

|b1i+1/2,j |hxi+1/2

2
− a∗

1i+1/2,j)
ui+1,j − uij

hxi+1/2

−(a1i−1/2,j −
|b1i−1/2,j |hxi−1/2

2
− a∗

1i−1/2,j)
uij − ui−1,j

hxi−1/2
]hyj ,

A4
ij = [(a2i,j+1/2 −

|b2i,j+1/2|hyj+1/2

2
− a∗

2i,j+1/2)
ui,j+1 − uij

hyj+1/2

−(a2i,j−1/2 −
|b2i,j−1/2|hyj−1/2

2
− a∗

2i,j−1/2)
uij − ui,j−1

hyj−1/2
]hxi ,
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A5
ij = [(a1i+1/2,j −

|b1i+1/2,j |hxi+1/2

2
)(

∂u

∂x
|i+1/2,j − ui+1,j − uij

hxi+1/2
)

−(a1i−1/2,j −
|b1i−1/2,j |hxi−1/2

2
)(

∂u

∂x
|i−1/2,j − uij − ui−1,j

hxi−1/2
)]hyj ,

A6
ij = [(a2i,j+1/2 −

|b2i,j+1/2|hyj+1/2

2
)(

∂u

∂y
|i,j+1/2 − ui,j+1 − uij

hyj+1/2
)

−(a2i,j−1/2 −
|b2i,j−1/2|hyj−1/2

2
)(

∂u

∂y
|i,j−1/2 − uij − ui,j−1

hyj−1/2
)]hxi ,

A7
ij = [b1i+1/2,j(H(b1i+1/2,j)uij + (1 − H(b1i+1/2,j)ui+1,j)

−b1i−1/2,j(H(b1i−1/2,j)ui−1,j + (1 − H(b1i−1/2,j)uij)]h
y
j ,

A8
ij = [b2i,j+1/2(H(b2i,j+1/2)uij + (1 − H(b2i,j+1/2,j)ui,j+1)

−b2i,j−1/2(H(b2i,j−1/2)ui,j−1 + (1 − H(b2i,j−1/2)uij)]hxi ,

A9
ij = −1/2[b1i+1/2,j(1 − 2H(b1i+1/2,j))hxi+1/2

∂u

∂x
|i+1/2,j

−b1i−1/2,j(1 − 2H(b1i−1/2,j))hxi−1/2
∂u

∂x
|i−1/2,j ]h

y
j ,

A10
ij = −1

2
[b2i,j+1/2(1 − 2H(b2i,j+1/2))h

y
j+1/2

∂u

∂y
|i,j+1/2

−b2i,j−1/2(1 − 2H(b2i,j−1/2))h
y
j−1/2

∂u

∂y
|i,j−1/2]hxi ,

A11
ij = cijuijh

x
i h

y
j .

Since

H(b1i+1/2,j)uij + (1 − H(b1i+1/2,j))ui+1,j = ui+1/2,j

+
1
2
(1 − 2H(b1i+1/2,j))hxi+1/2

∂u

∂x
|i+1/2,j

+
(hxi+1/2)

2

8
∂2u

∂x2 |i+1/2,j + O((hxi+1/2)
3),

H(b2i,j+1/2)uij + (1 − H(b2i,j+1/2))ui,j+1 = ui,j+1/2

+
1
2
(1 − 2H(b2i,j+1/2))h

y
j+1/2

∂u

∂y
|i,j+1/2

+
(hyj+1/2)

2

8
∂2u

∂y2
|i,j+1/2 + O((hyj+1/2)

3),

ϕi+1/2 − ϕi−1/2 = hiϕ
′
i +

1
8
(h2
i+1/2ϕ”i+1 − h2

i−1/2ϕ”i−1/2) + O(h3),

(3.6) leads to

[−(∇x̃(a∗
1∇x̄u)ij − (∇ỹ(a∗

2∇ȳu)ij + ∇x̃(buux)ij + ∇ỹ(buuy)ij

+cijuij)]hxi h
y
j = [− ∂

∂x
(a1

∂u

∂x
)ij − ∂

∂y
(a2

∂u

∂y
)ij +

∂

∂x
(b1u)ij
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+
∂

∂y
(b2u)ij + cijuij ]hxi h

y
j +

6∑
3

Al
ij +

8∑
3

Bl
ij

+O((hxi−1/2)
2 + (hxi+1/2)

2 + (hyj+1/2)
2 + (hyj+1/2)

2)hxi h
y
j ,

(3.7)

where

B3
ij =

1
8
[b1i+1/2,j(hxi+1/2)

2 ∂2u

∂x2 |i+1/2,j − b1i−1/2,j(hxi−1/2)
2 ∂2u

∂x2 |i−1/2,j ]h
y
j ,

B4
ij =

1
8
[b2i,j+1/2(h

y
j+1/2)

2 ∂2u

∂y2 |i,j+1/2 − b1i,j−1/2(h
y
j−1/2)

2 ∂2u

∂y2 |i,j−1/2]hxi ,

B5
ij =

1
8
[(hxi+1/2)

2 ∂2

∂x2 (b1u)i+1,j − (hxi−1/2)
2 ∂2

∂x2 (b1u)ij ]h
y
j ,

B6
ij =

1
8
[(hyj+1/2)

2 ∂2

∂y2 (b2u)i,j+1 − (hyj−1/2)
2 ∂2

∂y2 (b2u)ij ]hxi ,

B7
ij =

1
8
[b1i+1/2,j(hxi+1/2)

2 ∂2u

∂x2 |i+1/2,j − b1i−1/2,j(hxi−1/2)
2 ∂2u

∂x2 |i−1/2,j ]h
y
j ,

B8
ij =

1
8
[b2i,j+1/2(h

y
j+1/2)

2 ∂2u

∂y2 |i,j+1/2 − b1i,j−1/2(h
y
j−1/2)

2 ∂2u

∂y2 |i,j−1/2]hxi .

Now, let ξij = uij − Uij . Then, use (2.8) and (3.7) to obtain that ξi satisfies

[−(∇x̃(a∗
1∇x̄ξ)ij − (∇ỹ(a∗

2∇ȳξ)ij + ∇x̃(bξux)ij+

∇ỹ(bξuy)ij + cijξij)]hxi h
y
j =

6∑
3

Al
ij +

8∑
3

Bl
ij

+O((hxi−1/2)
2 + (hxi+1/2)

2 + (hyj+1/2)
2 + (hyj+1/2)

2)hxi h
y
j .

(3.8)

Multiply (3.8) by ξij , sum it up for i = 1, 2, . . . , N , j = 1, 2, . . . , M , and use
the discrete Green formula to obtain

N∑
i=1

M∑
j=1

[a∗
1i−1/2,j(

ξij − ξi−1,j

hxi−1/2
)2hxi−1/2h

y
j + a∗

2i,j−1/2(
ξij − ξi,j−1

hyj−1/2
)2hyj−1/2h

x
i +

1
2
|b1i−1/2,j |hxi (

ξij − ξi−1,j

hxi−1/2
)2hxi−1/2h

y
j +

1
2
|b2i,j−1/2|hyj (

ξij − ξi,j−1

hyj−1/2
)2hyj−1/2h

x
i ]

+
N∑
i=1

M∑
j=1

[cij +
1
2
(
b1i+1/2,j − b1i−1/2,j

hxi
+

b2i,j+1/2 − b2i,j−1/2

hyj
)]ξ2

ijh
x
i h

y
j

=
6∑
l=3

N∑
i=1

M∑
j=3

Al
ijξij +

8∑
l=3

N∑
i=1

M∑
j=3

Bl
ijvij

+
N∑
i=1

M∑
j=1

O((hxi−1/2)
2 + (hxi+1/2)

2 + (hyj−1/2)
2 + (hyj+1/2)

2)ξijhxi h
y
j .

(3.9)
Thus, use the discrete Green formula and the definition of Al

ij , Bl
ij , a∗

1i−1/2,j ,
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and a∗
2i,j−1/2 to obtain

|ξ|2a∗ +
1
2
|ξ|2bh +

N∑
i=1

M∑
j=1

[cij +
1
2
(
b1i+1/2,j − b1i−1/2,j

hxi

+
b2i,j+1/2 − b2i,j−1/2

hyj
)]ξ2

ijh
x
i h

y
j ≤ K[(hx)4 + (hy)4] + ε|ξ|2a∗ + ε‖ξ‖2,

(3.10)
where ε is an arbutary positive number. From the above analysis, we have

Theorem 3.2 Assume that u and U are the solutions of (1.1) and (2.8), re-
spectively, u has continuous 4th derivatives, and (3.4) and (3.5) are satisfied.
Then,

|ξ|a∗ + |ξ|bh + ‖ξ‖c0 ≤ Q((hx)2 + (hy)2), (3.11)

holds, where Q is a positive constant which does not depend on the partition
Ih.

Proof: Choose ε in (3.10) properly. Inequality (3.11) can be obtained from
(3.4), (3.5), and (3.10) directly. []

4 Conclusions

We have proposed a five point upwind finite difference scheme on nonuni-
form rectangular partitions for convection-diffusion equations by using a new
technique of handling the convective term. The proposed scheme is in the
conservation form, satisfies the maximum value principle, and has a second-
order error estimate. We have done some numerical experiments, which show
that the high-order upwind scheme is as accurate as central methods for
nonconvection-dominated problems and more accurate than full upwind me-
thods for strong convection-dominated problems, in which the central me-
thods do not work. Thus we can say that the proposed method can be used
to simulate realistic fluid flow problems numerically.
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Garćıa-Lafuente, Jesús, 351-361
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Øye, Geir Åge, 244-266

P

Papavassiliou, Dimitrios V.,
156-169
Peng, Hong, 190-194
Pereira, Felipe, 138-155

Q

Qin, Guan, 80-92, 156-169, 232-243,
324-332

R

Reichenberger, Volker, 50-68
Reme, Hilde, 244-266
Roberts, Jean E., 22-34
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